Free products of dimonoids

Anatolii V. Zhuchok

Abstract

We construct a free product of dimonoids which generalizes a free dimonoid presented by J.-L. Loday and describe its structure.

1. Introduction

A dimonoid is a nonempty set D equipped with two binary associative operations \circ and $*$ satisfying the axioms $(x \circ y) \circ z=x \circ(y * z), \quad(x * y) \circ z=x *(y \circ z)$, $(x \circ y) * z=x *(y * z)$, while a dialgebra is just a linear analog of a dimonoid. These notions were introduced by J.-L. Loday [1] for solving of problems in Leibniz algebras and investigated by many authors (see, e.g., [2]).

The construction of a free dimonoid generated by a given set was presented by J.-L. Loday [1] and applied to the study of free dialgebras and a cohomology of dialgebras. Structural properties of free dimonoids have been investigated in [3].

In this paper we present a construction of a free product of arbitrary dimonoids which generalizes a free dimonoid and describe its structure. The obtained results extend the corresponding results from [1] and [3].

2. The main result

As usual, we denote the set of all positive integers by \mathbb{N}.
Let $\operatorname{Fr}\left[S_{i}\right]_{i \in I}$ be the free product of arbitrary semigroups $S_{i}, i \in I$. For every $w \in \operatorname{Fr}\left[S_{i}\right]_{i \in I}$ denote the first (respectively, last) letter of w by $w^{(0)}$ (respectively, $w^{(1)}$) and the length of w by l_{w}. Consider the set

$$
G\left(S_{i}\right)_{i \in I}=\left\{(w, m) \in \operatorname{Fr}\left[S_{i}\right]_{i \in I} \times \mathbb{N} \mid l_{w} \geqslant m\right\}
$$

For all $(w, m) \in G\left(S_{i}\right)_{i \in I}$ and $u \in \operatorname{Fr}\left[S_{i}\right]_{i \in I}$ assume

$$
f_{(w, m)}^{u}=\left\{\begin{array}{c}
l_{u}+m, \quad l_{u^{(1)} w^{(0)}}=2, \tag{1}\\
l_{u}+m-1, \quad l_{u^{(1)} w^{(0)}}=1 .
\end{array}\right.
$$

We need the following two lemmas.

[^0]Lemma 2.1. Let $(u, s),(\omega, s) \in G\left(S_{i}\right)_{i \in I}$ and $w \in \operatorname{Fr}\left[S_{i}\right]_{i \in I}$. If $u^{(0)}, \omega^{(0)} \in S_{i}$ for some $i \in I$, then $f_{(u, s)}^{w}=f_{(\omega, s)}^{w}$.
Lemma 2.2. For all $w_{1}, w_{2}, w_{3} \in \operatorname{Fr}\left[S_{i}\right]_{i \in I}$ and $\left(w_{3}, m_{3}\right) \in G\left(S_{i}\right)_{i \in I}$,

$$
f_{\left(w_{2} w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{2}}\right)}^{w_{1}}=f_{\left(w_{3}, m_{3}\right)}^{w_{1} w_{2}}
$$

Proof. As $\left(w_{2} w_{3}\right)^{(0)} \in S_{i} \Leftrightarrow w_{2}^{(0)} \in S_{i}$ for some $i \in I$ and $\left(w_{1} w_{2}\right)^{(1)} \in S_{j} \Leftrightarrow w_{2}^{(1)} \in S_{j}$ for some $j \in I$, then

$$
\begin{align*}
& l_{w_{1}(1)\left(w_{2} w_{3}\right)^{(0)}}=l_{w_{1}^{(1)} w_{2}^{(0)}}, \tag{2}\\
& l_{\left(w_{1} w_{2}\right)^{(1)} w_{3}^{(0)}}=l_{w_{2}^{(1)} w_{3}^{(0)}} . \tag{3}
\end{align*}
$$

It is not difficult to see that

$$
l_{w_{1} w_{2}}=\left\{\begin{array}{c}
l_{w_{1}}+l_{w_{2}}, l_{w_{1}^{(1)} w_{2}^{(0)}}=2 \tag{4}\\
l_{w_{1}}+l_{w_{2}}-1, l_{w_{1}^{(1)} w_{2}^{(0)}}=1
\end{array}\right.
$$

By (1) - (3) we have

$$
\begin{align*}
& f_{\left(w_{3}, m_{3}\right)}^{w_{2}}=\left\{\begin{array}{c}
l_{w_{2}}+m_{3}, l_{w_{2}^{(1)}} w_{3}^{(0)}=2, \\
l_{w_{2}}+m_{3}-1, l_{w_{2}^{(1)} w_{3}^{(0)}}=1,
\end{array}\right. \tag{5}\\
& f_{\left(w_{2} w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{2}} w_{1}\right.}^{w_{1}}=\left\{\begin{array}{c}
l_{w_{1}}+f_{\left(w_{3}, m_{3}\right)}^{w_{2}}, l_{w_{1}^{(1)} w_{2}^{(0)}=2,}, \\
l_{w_{1}}+f_{\left(w_{3}, m_{3}\right)}^{w_{2}-1,} l_{w_{1}^{(1)} w_{2}^{(0)}=1,},
\end{array}\right. \tag{6}\\
& f_{\left(w_{3}, m_{3}\right)}^{w_{1} w_{2}}=\left\{\begin{array}{c}
l_{w_{1} w_{2}}+m_{3}, l_{w_{2}^{(1)} w_{3}^{(0)}=2,}^{l_{w_{1} w_{2}}+m_{3}-1, l_{w_{2}^{(1)} w_{3}^{(0)}=1 .} .}
\end{array} .\right. \tag{7}
\end{align*}
$$

Further, using (4) - (7), consider the following four cases.
Case 1. $\quad l_{w_{1}^{(1)} w_{2}^{(0)}}=l_{w_{2}^{(1)} w_{3}^{(0)}}=2$. Then $f_{\left(w_{3}, m_{3}\right)}^{w_{2}}=l_{w_{2}}+m_{3}$ and

$$
f_{\left(w_{2} w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{2}}\right)}^{w_{1}}=l_{w_{1}}+f_{\left(w_{3}, m_{3}\right)}^{w_{2}}=l_{w_{1}}+l_{w_{2}}+m_{3}=l_{w_{1} w_{2}}+m_{3}=f_{\left(w_{3}, m_{3}\right)}^{w_{1} w_{2}}
$$

Case 2. $l_{w_{1}^{(1)} w_{2}^{(0)}}=2$ and $l_{w_{2}^{(1)} w_{3}^{(0)}}=1$. Then $f_{\left(w_{3}, m_{3}\right)}^{w_{2}}=l_{w_{2}}+m_{3}-1$ and
$f_{\left(w_{2} w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{2}}\right)}^{w_{1}}=l_{w_{1}}+f_{\left(w_{3}, m_{3}\right)}^{w_{2}}=l_{w_{1}}+l_{w_{2}}+m_{3}-1=l_{w_{1} w_{2}}+m_{3}-1=f_{\left(w_{3}, m_{3}\right)}^{w_{1} w_{2}}$.
Case 3. $l_{w_{1}^{(1)} w_{2}^{(0)}}=1$ and $l_{w_{2}^{(1)} w_{3}^{(0)}}=2$. Then $f_{\left(w_{3}, m_{3}\right)}^{w_{2}}=l_{w_{2}}+m_{3}$ and $f_{\left(w_{2} w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{2}}\right)}^{w_{1}}=l_{w_{1}}+f_{\left(w_{3}, m_{3}\right)}^{w_{2}}-1=l_{w_{1}}+l_{w_{2}}+m_{3}-1=l_{w_{1} w_{2}}+m_{3}=f_{\left(w_{3}, m_{3}\right)}^{w_{1} w_{2}}$.
Case 4. $l_{w_{1}^{(1)} w_{2}^{(0)}}=l_{w_{2}^{(1)} w_{3}^{(0)}}=1$. Then $f_{\left(w_{3}, m_{3}\right)}^{w_{2}}=l_{w_{2}}+m_{3}-1$ and

$$
f_{\left(w_{2} w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{1}}\right)}^{w_{2}}=l_{w_{1}}+f_{\left(w_{3}, m_{3}\right)}^{w_{2}}-1=l_{w_{1}}+l_{w_{2}}+m_{3}-2=l_{w_{1} w_{2}}+m_{3}-1=f_{\left(w_{3}, m_{3}\right)}^{w_{1} w_{2}} .
$$

Thus, $f_{\left(w_{2} w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{1}}\right)}^{w_{1}}=f_{\left(w_{3}, m_{3}\right)}^{w_{1} w_{2}}$.

For a given relation ρ on a dimonoid $(D, \circ, *)$, the congruence generated by ρ is the least congruence on $(D, \circ, *)$ containing ρ. It will be denoted by ρ^{\star} and can be characterized as the intersection of all congruences on ($D, \circ, *$) containing ρ.

Let $\left\{\left(D_{i}, \circ_{i}, *_{i}\right)\right\}_{i \in I}$ be a family of arbitrary pairwise disjoint dimonoids. Operations on $\operatorname{Fr}\left[\left(D_{i}, \circ_{i}\right)\right]_{i \in I}$ and $\operatorname{Fr}\left[\left(D_{i}, *_{i}\right)\right]_{i \in I}$ will be denoted by \circ and $*$ respectively. For every $i \in I$ consider a relation $\theta_{i}=\left\{\left(a *_{i} b, a \circ_{i} b\right) \mid a, b \in D_{i}\right\}$ on a dimonoid $\left(D_{i}, \circ_{i}, *_{i}\right)$. It is clear that operations of $\left(D_{i}, \circ_{i}, *_{i}\right) / \theta_{i}^{\star}$ coincide and it is a semigroup.

Let $\omega_{1}=\left(x_{1} x_{2} \ldots x_{s}, t\right), \omega_{2}=\left(y_{1} y_{2} \ldots y_{p}, r\right) \in G\left(\left(D_{i}, \circ_{i}\right)\right)_{i \in I}$, where elements $x_{1}, \ldots, x_{s}, y_{1}, \ldots, y_{p} \in \bigcup_{i \in I} D_{i}$. Define a relation \sim on $G\left(\left(D_{i}, \circ_{i}\right)\right)_{i \in I}$ by putting

$$
\omega_{1} \sim \omega_{2} \Leftrightarrow\left\{\begin{array}{l}
s=p, t=r \text { and } x_{k} \theta_{j_{k}}^{\star} y_{k} \text { for all } 1 \leqslant k \leqslant s \text { and some } j_{k} \in I, \\
\text { at that } x_{t}=y_{r} .
\end{array}\right.
$$

It is not difficult to check that \sim is an equivalence relation. Denote by $[w, m]$ the equivalence class of \sim containing an element $(w, m) \in G\left(\left(D_{i}, \circ_{i}\right)\right)_{i \in I}$, and by $G^{\star}\left(\left(D_{i}, \circ_{i}\right)\right)_{i \in I}$ the quotient set $G\left(\left(D_{i}, \circ_{i}\right)\right)_{i \in I} / \sim$.

Observe that (1) does not depend on the definition of operations on semigroups $S_{i}, i \in I$, and define operations \circ^{\prime} and $*^{\prime}$ on $G^{\star}\left(\left(D_{i}, \circ_{i}\right)\right)_{i \in I}$ by

$$
\begin{gathered}
{\left[w_{1}, m_{1}\right] \circ^{\prime}\left[w_{2}, m_{2}\right]=\left[w_{1} \circ w_{2}, m_{1}\right],} \\
{\left[w_{1}, m_{1}\right] *^{\prime}\left[w_{2}, m_{2}\right]=\left[w_{1} * w_{2}, f_{\left(w_{2}, m_{2}\right)}^{w_{1}}\right]}
\end{gathered}
$$

for all $\left[w_{1}, m_{1}\right],\left[w_{2}, m_{2}\right] \in G^{\star}\left(\left(D_{i}, \circ_{i}\right)\right)_{i \in I}$. The algebra $\left(G^{\star}\left(\left(D_{i}, \circ_{i}\right)\right)_{i \in I}, \circ^{\prime}, *^{\prime}\right)$ will be denoted by $\breve{G}\left(D_{i}\right)_{i \in I}$.

Theorem 2.3. $\breve{G}\left(D_{i}\right)_{i \in I}$ is the free product of dimonoids $\left(D_{i}, \circ_{i}, *_{i}\right), i \in I$.
Proof. First note that from the associativity of the operation of a free product semigroups it follows that

$$
\begin{align*}
& \left(w_{1} \circ w_{2}\right) \circ w_{3}=w_{1} \circ\left(w_{2} \circ w_{3}\right), \tag{8}\\
& \left(w_{1} * w_{2}\right) \circ w_{3}=w_{1} *\left(w_{2} \circ w_{3}\right) \tag{9}\\
& \left(w_{1} * w_{2}\right) * w_{3}=w_{1} *\left(w_{2} * w_{3}\right) \tag{10}
\end{align*}
$$

for all $w_{1}, w_{2}, w_{3} \in \operatorname{Fr}\left[\left(D_{i}, \circ_{i}\right)\right]_{i \in I}$.
The associativity of the operation o^{\prime} follows from (8). Let further [w_{1}, m_{1}], $\left[w_{2}, m_{2}\right],\left[w_{3}, m_{3}\right] \in \breve{G}\left(D_{i}\right)_{i \in I}$. Then

$$
\begin{aligned}
\left(\left[w_{1}, m_{1}\right] \circ^{\prime}\left[w_{2}, m_{2}\right]\right) \circ^{\prime}\left[w_{3}, m_{3}\right] & =\left[w_{1} \circ w_{2}, m_{1}\right] \circ^{\prime}\left[w_{3}, m_{3}\right] \\
& =\left[\left(w_{1} \circ w_{2}\right) \circ w_{3}, m_{1}\right]=\left[w_{1} \circ\left(w_{2} \circ w_{3}\right), m_{1}\right] \\
& =\left[w_{1} \circ\left(w_{2} * w_{3}\right), m_{1}\right]=\left[w_{1}, m_{1}\right] \circ^{\prime}\left[w_{2} * w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{2}}\right] \\
& =\left[w_{1}, m_{1}\right] \circ^{\prime}\left(\left[w_{2}, m_{2}\right] *^{\prime}\left[w_{3}, m_{3}\right]\right),
\end{aligned}
$$

by (8) and the condition $\left(w_{1} \circ\left(w_{2} \circ w_{3}\right), m_{1}\right) \sim\left(w_{1} \circ\left(w_{2} * w_{3}\right), m_{1}\right)$.

Moreover, using (9) and Lemma 2.1, we obtain

$$
\begin{aligned}
\left(\left[w_{1}, m_{1}\right] *^{\prime}\left[w_{2}, m_{2}\right]\right) \circ^{\prime}\left[w_{3}, m_{3}\right] & \left.=\left[w_{1} * w_{2}, f_{\left(w_{2}, m_{2}\right)}^{w_{1}}\right]\right]^{\prime}\left[w_{3}, m_{3}\right] \\
& =\left[\left(w_{1} * w_{2}\right) \circ w_{3}, f_{\left(w_{2}, m_{2}\right)}^{w_{1}}\right] \\
& =\left[w_{1} *\left(w_{2} \circ w_{3}\right), f_{\left(w_{2} \circ w_{3}, m_{2}\right)}^{w_{1}}\right] \\
& =\left[w_{1}, m_{1}\right] *^{\prime}\left[w_{2} \circ w_{3}, m_{2}\right] \\
& =\left[w_{1}, m_{1}\right] *^{\prime}\left(\left[w_{2}, m_{2}\right] \circ^{\prime}\left[w_{3}, m_{3}\right]\right) .
\end{aligned}
$$

Further we get

$$
\begin{aligned}
{\left[w_{1}, m_{1}\right] *^{\prime}\left(\left[w_{2}, m_{2}\right] *^{\prime}\left[w_{3}, m_{3}\right]\right) } & =\left[w_{1}, m_{1}\right] *^{\prime}\left[w_{2} * w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{2}}\right] \\
& =\left[w_{1} *\left(w_{2} * w_{3}\right), f_{\left(w_{2} * w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{2}} w_{1}\right.}^{w_{2}}\right] \\
& =\left[\left(w_{1} * w_{2}\right) * w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{1}}\right]=\left[\left(w_{1} \circ w_{2}\right) * w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{1} \circ w_{2}}\right] \\
& =\left[w_{1} \circ w_{2}, m_{1}\right] *^{\prime}\left[w_{3}, m_{3}\right] \\
& =\left(\left[w_{1}, m_{1}\right] \circ^{\prime}\left[w_{2}, m_{2}\right]\right) *^{\prime}\left[w_{3}, m_{3}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\left[w_{1}, m_{1}\right] *^{\prime}\left[w_{2}, m_{2}\right]\right) *^{\prime}\left[w_{3}, m_{3}\right] & =\left[w_{1} * w_{2}, f_{\left(w_{2}, m_{2}\right)}^{w_{1}}\right] *^{\prime}\left[w_{3}, m_{3}\right] \\
& =\left[\left(w_{1} * w_{2}\right) * w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{1} * w_{2}}\right],
\end{aligned}
$$

according to (10), Lemma 2.2 and the fact that

$$
\left(\left(w_{1} * w_{2}\right) * w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{1} \circ w_{2}}\right) \sim\left(\left(w_{1} \circ w_{2}\right) * w_{3}, f_{\left(w_{3}, m_{3}\right)}^{w_{1} \circ w_{2}}\right) .
$$

This shows that $\breve{G}\left(D_{i}\right)_{i \in I}$ is a dimonoid. Moreover, for each $\left(D_{i}, \circ_{i}, *_{i}\right), i \in I$, we have

$$
\left(D_{i}, \circ_{i}, *_{i}\right) \cong \widetilde{D}_{i}=\left\{[w, 1] \in \breve{G}\left(D_{i}\right)_{i \in I} \mid w \in D_{i}\right\}
$$

and all subdimonoids $\widetilde{D}_{i}, i \in I$, generate $\breve{G}\left(D_{i}\right)_{i \in I}$.
In order to complete the proof we should check the condition of continuability of a homomorphism. For this let

$$
\alpha_{i}:\left(D_{i}, \circ_{i}, *_{i}\right) \rightarrow\left(T, \circ^{\prime \prime}, *^{\prime \prime}\right)
$$

where $i \in I$, be a homomorphism from $\left(D_{i}, \circ_{i}, *_{i}\right)$ to an arbitrary dimonoid $\left(T, \circ^{\prime \prime}, *^{\prime \prime}\right)$. Define a map

$$
\alpha: \breve{G}\left(D_{i}\right)_{i \in I} \rightarrow\left(T, \circ^{\prime \prime}, *^{\prime \prime}\right):\left[x_{1} \ldots x_{k} \ldots x_{s}, t\right] \mapsto\left[x_{1} \ldots x_{k} \ldots x_{s}, t\right] \alpha
$$

assuming

$$
\left[x_{1} \ldots x_{k} \ldots x_{s}, t\right] \alpha=x_{1} \gamma_{1} *^{\prime \prime} \ldots *^{\prime \prime} x_{t} \gamma_{t} \circ^{\prime \prime} \ldots \circ^{\prime \prime} x_{s} \gamma_{s}
$$

where $\gamma_{k}=\alpha_{k}$ for $x_{k} \in D_{k}, 1 \leqslant k \leqslant s$.
A straightforward verification shows that $\left[w_{1}, m_{1}\right] \alpha=\left[w_{2}, m_{2}\right] \alpha$ for all $\left[w_{1}, m_{1}\right]$, $\left[w_{2}, m_{2}\right] \in \breve{G}\left(D_{i}\right)_{i \in I}$, if $\left(w_{1}, m_{1}\right) \in\left[w_{2}, m_{2}\right]$, and so, α is well-defined.

Using axioms of a dimonoid and homomorphisms $\alpha_{i}, i \in I$, one can show that α is a homomorphism continuing $\alpha_{i}, i \in I$. Thus, $\breve{G}\left(D_{i}\right)_{i \in I}$ is the free product of dimonoids $\left(D_{i}, \circ_{i}, *_{i}\right), i \in I$.

From Theorem 2.3 we obtain
Corollary 2.4. The free dimonoid is the free product $\breve{G}\left(D_{i}\right)_{i \in I}$ of one-generated free dimonoids $\left(D_{i}, \circ_{i}, *_{i}\right), i \in I$.

Proof. Observe that the free dimonoid $(D(X), \circ, *)$ of an arbitrary rank was constructed in ([1], p. 15) and the structure of one-generated free dimonoids was described in [3]. By Lemma 3 from [3] $\breve{G}\left(D_{i}\right)_{i \in I} \cong(D(X), \circ, *)$.

3. The structure of $\breve{G}\left(D_{i}\right)_{i \in I}$

Let $B(I)$ be the semilattice of all nonempty finite subsets of I with respect to the operation of the set theoretical union. For every $w=x_{1} x_{2} \ldots x_{l} \ldots x_{k} \in$ $\operatorname{Fr}\left[\left(D_{i}, \circ_{i}\right)\right]_{i \in I}$ assume $\tilde{c}(w)=\bigcup_{l=1}^{k}\left\{x_{l} j^{\prime}\right\}$, where

$$
j^{\prime}: \bigcup_{i \in I} D_{i} \rightarrow I: a \mapsto i, \text { if } a \in D_{i}, i \in I
$$

For every $Y \in B(I)$ and all $x, y \in Y$ let

$$
\begin{gathered}
H_{Y}=\left\{[w, m] \in \breve{G}\left(D_{i}\right)_{i \in I} \mid \tilde{c}(w)=Y\right\}, \\
H_{Y}^{(x, y)}=\left\{[w, m] \in H_{Y} \mid\left(w^{(0)} j^{\prime}, w^{(1)} j^{\prime}\right)=(x, y)\right\},
\end{gathered}
$$

$Y \times Y$ be a rectangular band, that is, a semigroup with the operation $(x, y)(a, b)=$ (x, b). It is easy to see that H_{Y} is a subdimonoid of $\breve{G}\left(D_{i}\right)_{i \in I}$ and $H_{Y}^{(x, y)}$ is a subdimonoid of H_{Y}.

In terms of dibands of subdimonoids (see, e.g., [4]) we obtain the following structure theorem.

Theorem 3.1. The free product $\breve{G}\left(D_{i}\right)_{i \in I}$ of dimonoids $\left(D_{i}, \circ_{i}, *_{i}\right), i \in I$, is a semilattice $B(I)$ of subdimonoids $H_{Y}, Y \in B(I)$. Every dimonoid $H_{Y}, Y \in B(I)$, is a rectangular band $Y \times Y$ of subdimonoids $H_{Y}^{(x, y)},(x, y) \in Y \times Y$.

Proof. Assuming

$$
c^{\prime}:[w, m] \mapsto \tilde{c}(w)
$$

we obtain a homomorphism from $\breve{G}\left(D_{i}\right)_{i \in I}$ to $B(I)$ as

$$
\tilde{c}(w \star u)=\tilde{c}(w) \cup \tilde{c}(u)
$$

for all $w, u \in \operatorname{Fr}\left[\left(D_{i}, \circ_{i}\right)\right]_{i \in I}$ and $\star \in\{\circ, *\}$. Hence, $\breve{G}\left(D_{i}\right)_{i \in I}$ is a semilattice $B(I)$ of subdimonoids $H_{Y}, Y \in B(I)$.

Now we shall prove the second part of the theorem.
Let

$$
\pi: H_{Y} \rightarrow Y \times Y:[w, m] \mapsto\left(w^{(0)} j^{\prime}, w^{(1)} j^{\prime}\right)
$$

As

$$
(w \star u)^{(0)} j^{\prime}=w^{(0)} j^{\prime}, \quad(w \star u)^{(1)} j^{\prime}=u^{(1)} j^{\prime}
$$

for all $w, u \in \operatorname{Fr}\left[\left(D_{i}, \circ_{i}\right)\right]_{i \in I}$ and $\star \in\{\circ, *\}$, then π is a homomorphism. From here, H_{Y} is a rectangular band $Y \times Y$ of subdimonoids $H_{Y}^{(x, y)},(x, y) \in Y \times Y$.

We finish this section with the description of some congruence on $\breve{G}\left(D_{i}\right)_{i \in I}$ when $\circ_{i}=*_{i}$ for all $i \in I$.

First observe that if $\circ_{i}=*_{i}$ for all $i \in I$, then \sim is the diagonal of $G\left(S_{i}\right)_{i \in I}$ and $G\left(S_{i}\right)_{i \in I} / \sim$ is identified with $G\left(S_{i}\right)_{i \in I}$. It is clear that in this case $\circ=*$.

Let α be an arbitrary fixed congruence on $\operatorname{Fr}\left[S_{i}\right]_{i \in I}$. Define a relation $\tilde{\alpha}$ on $\breve{G}\left(S_{i}\right)_{i \in I}$ by

$$
\left[w_{1}, m_{1}\right] \tilde{\alpha}\left[w_{2}, m_{2}\right] \Leftrightarrow w_{1} \alpha w_{2}
$$

for all $\left[w_{1}, m_{1}\right],\left[w_{2}, m_{2}\right] \in \breve{G}\left(S_{i}\right)_{i \in I}$.
It is not difficult to prove the following lemma.
Lemma 3.2. The relation $\tilde{\alpha}$ is a congruence on the dimonoid $\breve{G}\left(S_{i}\right)_{i \in I}$ and operations of the quotient dimonoid $\breve{G}\left(S_{i}\right)_{i \in I} / \tilde{\alpha}$ coincide.

From Lemma 3.2 we obtain
Corollary 3.3. If α is the diagonal of $\operatorname{Fr}\left[S_{i}\right]_{i \in I}$, then $\breve{G}\left(S_{i}\right)_{i \in I} / \tilde{\alpha}$ is the free product of semigroups.

Note that Theorem 3.1, Lemma 3.2 and Corollary 3.3 extend, respectively, Theorem 3, Lemma 5 and Corollary 1 from [3].

References

[1] J. L. Loday, Dialgebras, Lect. Notes Math. 1763, Springer-Verlag, Berlin (2001), 7-66.
[2] A. P. Pozhidaev, Dialgebras and related triple systems, Sib. Math. J. 49 (2008), 696-708.
[3] A. V. Zhuchok, Free dimonoids, Ukr. Math. J. 63 (2011), 196-208.
[4] A. V. Zhuchok, Dimonoids, Algebra and Logic 50 (2011), 323 - 340.

Department of Mathematical Analysis and Algebra
Luhansk Taras Shevchenko National University
Oboronna str. 2
Luhansk, 91011
Ukraine
e-mail: zhuchok_a@mail.ru

[^0]: 2010 Mathematics Subject Classification: 08B20, 20M10, 20M50, 17A30, 17A32.
 Keywords: dimonoid, free product of dimonoids, free dimonoid, diband of subdimonoids.

