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Free products of dimonoids

Anatolii V. Zhuchok

Abstract. We construct a free product of dimonoids which generalizes a free dimonoid presented
by J.-L. Loday and describe its structure.

1. Introduction

A dimonoid is a nonempty set D equipped with two binary associative operations
o and x satisfying the axioms (zoy)oz =xzo0(y*2), (zxy)oz==1x=x(yoz),
(xoy)*xz =z x(yx*=z), while a dialgebra is just a linear analog of a dimonoid.
These notions were introduced by J.-L. Loday [1] for solving of problems in Leibniz
algebras and investigated by many authors (see, e.g., [2]).

The construction of a free dimonoid generated by a given set was presented by
J.-L. Loday [1] and applied to the study of free dialgebras and a cohomology of
dialgebras. Structural properties of free dimonoids have been investigated in [3].

In this paper we present a construction of a free product of arbitrary dimonoids
which generalizes a free dimonoid and describe its structure. The obtained results
extend the corresponding results from [1] and [3].

2. The main result

As usual, we denote the set of all positive integers by N.

Let Fr[Si]icr be the free product of arbitrary semigroups S;, ¢ € I. For every
w € Fr[Si|icr denote the first (respectively, last) letter of w by w(®) (respectively,
w(l)) and the length of w by [,,. Consider the set

G(Si)ier = {(w,m) € Fr[Silier x N|l, = m}.

For all (w,m) € G(S;)ier and u € Fr[S;];cr assume

“ . ly +m, L,a),0 =2,
f(wvm) B { lu +m—1, lu(l)w(o) =1 (1)

We need the following two lemmas.
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Lemma 2.1. Let (u,s), (w,s) € G(Sy)icr and w € Fr(Silics. If u® 0w € §;

for some i € I, then f . = fi, - ]
Lemma 2.2. For all wy,ws,ws € Fr[S;lic; and (ws,m3) € G(S;)ier,

w1 — w1 Wwao

(waws, f&zsym:})) (w3,m3)"

Proof. As (wgwg)(o) €S & wéo) € S; for some i € I and (wlwg)(l) €S & wél) €S;
for some j € I, then

Loy O (wz )@ = Ly, (2)
YD = lw;mwéo). (3)

(wiw2

It is not difficult to see that

oy = 4 o e Lo =2 (4)
e by Hlw, =1, L 0y 0 = 1.

By (1) — (3) we have

Ly, +m3, L ) ) =2,
f 2 wy Wy (5)
(ws,msz) — lw2 +ms — 1, lw(mwm) =1,

2 3

- _ { Ly + flus ma) | WD ® = 2,

(W2w3, f(7 ma) Loy + Sy sy — b Ly =1,
f(wm { lyws + M3, lwél)wém =2,
ws,ms) ) Ly, +mg — 1, lwél)wgm =1.
Further, using (4) — (7), consider the following four cases.
Case 1. | WD ® =1 wPw® = = 2. Then f(u15 ms) = = ly, + m3 and

wi
(waws, f

w1 w2
(ws,m3)"

wa ) = wl + f(w3 ms) lwl + lwz +m3 = lwlwz +m3 = f

(w3,m3)

Case 2. [ w{Dw® =2and ! W@ = = 1. Then f(w ma) = =ly, + msg—1 and

for L, +f(w?),m:}) =y, +Hlwy, +mz—1=ly,w, +m3—1= flon

(waws, f(w3 7”3)) (ws,m3)"
Case 3. 1 WD = 1 and [ WP w® = 2. Then f(w ms) = = ly, + m3 and

w1
w
(waws, f(“’?’s m.g))

= lu, +f(u;3 ms) —1=lu, +lw, +mz—1=luyw, +msg = fr "

(w3,m3)"

Case 4. | wDw® = l wPw® = 1. Then f(w3 may = ly, + ms —1 and

f(wwlzw& f(wZ ) - wl+f(wd mg) 1= byl t M =2 = Ly, tma—1 = fguﬂjslfjﬁis)
w3,msg
w1 __ fwiwz
Thus, f(w2w37 fgvzs,ms)) = f(w37m3)- O
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For a given relation p on a dimonoid (D, o, *), the congruence generated by p
is the least congruence on (D, o, *) containing p. It will be denoted by p* and can
be characterized as the intersection of all congruences on (D, o, *) containing p.

Let {(D;, 0i, *;) }ier be a family of arbitrary pairwise disjoint dimonoids. Ope-
rations on Fr[(D;,o;)]ier and Fr[(D;,*;)]icr will be denoted by o and * respec-
tively. For every ¢ € I consider a relation 8; = {(a *; b,a 0; b)|a,b € D;} on a
dimonoid (D;, 04, %;). It is clear that operations of (D;,0;,%;)/0F coincide and it
is a semigroup.

Let wy = (z122...%s, 1), wo = (Yy1y2 ... Yp,7) € G((D;, 0;))icr, where elements
L1, T, Y1y Yp € Usep Di- Define a relation ~ on G((D;,0;))icr by putting

s =p, t =7 and z;07 yi for all 1 <k < s and some jy, € 1,

w1 ~w2<:>{ at that z; = y,.

It is not difficult to check that ~ is an equivalence relation. Denote by [w,m]
the equivalence class of ~ containing an element (w,m) € G((D;,0;)):er, and by
G*((Diaoi))iel the quotient set G((DZ, oi))ie[/ ~.

Observe that (1) does not depend on the definition of operations on semigroups
Si, i € I, and define operations o’ and %" on G*((D;,0;))ier by

[wy,mq] o [wa, ma] = [wy 0 wa, my],

[wl,ml] *I [wz,mg] = [w1 * Wa, f(w'wlg,mg)]

for all [wi,ma], w2, ma2] € G*((Di,0;))ier. The algebra (G*((D;,04))ier, o', *') will
be denoted by G(D;)ics-

Theorem 2.3. é(Di)iGI is the free product of dimonoids (D;,0;,%;),i € I.

Proof. First note that from the associativity of the operation of a free product
semigroups it follows that

(w1 OU}Q)OU)g zwlo(w20w3), (8)
(wy * wy) o wg = wy * (wg 0 ws), (9)
(w1 * we) * wy = wy * (W * w3) (10)

for all w1, wa, w3 € Fr{(Dy,o;)ier.
The associativity of the operation o’ follows from (8). Let further [wi,m4],

[wa, ma], [ws,ms] € G(D;)ics. Then
([w1, m1]o’ [wa, ma]) o [ws, ms] = [w10 wa, my]o’ [ws, ms]

(w10 w2) o w37m1] = [wlo (w20 wg),mﬂ
w10(w2*w3),m1] = [wlaml]ol [w2 * Ws, f(vffg)m?,)]
wi, mq]o’ ([wz, ma] ¥ [w3, m3]),

=
=
=
=

by (8) and the condition (w; o (wz o ws), m1) ~ (w1 o (wa * w3), m1).
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Moreover, using (9) and Lemma 2.1, we obtain
([w1, ma] « [wa, ma]) o’ [ws, ms] = [w1xws, f(qu%mz)]o’ [ws, ms3]
(wi* wa)ows, fi, ]
wy* (w2 © ’LU3), f(qulzows,mﬂ]
= [wy, mq]* [waows, mo]
wy, my] ¥ ([we, ma]o’ [ws, m3]).
Further we get
[wy, mi]* ([wa, ma]* [ws, m3]) = [w1, m1]* [wa * w3, f(%i,,me,)}

wy *(wa kw3), fo;Q*w& f(wﬂ?a‘ma))]

(wixwg) xws, f&;%é)] = [(w1ows)*ws, f,

wy ows, my |* (w3, ms]

w1 0wWs ]
(w3,m3)

[
[

([w1, my]o’ [wa, ma])#' [ws, ms]

and

([wr, my]* [wa, ma])# [ws, ms] = [wy *ws, f(“l’ulz’mﬁ}*/ [ws, ms]

= [('UJ1*'UJQ)*7.U37 fW1*w2 }7

(ws,m3)
according to (10), Lemma 2.2 and the fact that

w1 0wz

(w31m3)) ~ ((wl o wg) * w37fw10w2 )

(w1 * w2) *ws, f (ws,m3)

This shows that é(Di)ie[ is a dimonoid. Moreover, for each (D;,0;,%;),i € I,
we have

(D, 04, %;) = D; = {[w,1] € G(D;)ies |w € D;}

and all subdimonoids l~)i,i € I, generate Cu?(Di)ie I
In order to complete the proof we should check the condition of continuability
of a homomorphism. For this let

a; : (Dy, 04, %) — (T, o, *H)v
where ¢ € I, be a homomorphism from (D;,o;,%;) to an arbitrary dimonoid
(T,0”,%"). Define a map
o CVJ(DZ-)Z-GI — (T,",+") i [x1 . g gy t] > [T1 .ok T,
assuming
[T1.. 2.z, tla =19 # oK ey 00" ey,

where v, = ay for zp, € Dy, 1 < k < s.

A straightforward verification shows that [wy, m;]a = [wa, ma]a for all [wy, m4],
[wa, ma] € G(Dy)icr, if (wy,my) € [wy,ms), and so, a is well-defined.

Using axioms of a dimonoid and homomorphisms «a;,7 € I, one can show that
« is a homomorphism continuing «;,¢ € I. Thus, é(Di)iej is the free product of
dimonoids (D;, 04, %;),7 € I. O
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From Theorem 2.3 we obtain

Corollary 2.4. The free dimonoid is the free product G’(Di)iej of one-generated
free dimonoids (D;,0;,%;),1 € I.

Proof. Observe that the free dimonoid (D(X), o, *) of an arbitrary rank was con-
structed in ([1], p- 15) and the structure of one-generated free dimonoids was
described in [3]. By Lemma 3 from [3] G(D;)icr = (D(X), 0, *). O

3. The structure of CU?(DZ-)ZE[

Let B(I) be the semilattice of all nonempty finite subsets of I with respect to

the operation of the set theoretical union. For every w = x12o...27... 2% €
~ k .

Fr((D;,0i)]icr assume &(w) = J,_,{z1j'}, where

j’:UDiHI:ar—»z’, ifae D;, i€l
icl

For every Y € B(I) and all z,y € Y let
Hy = {[w,m] € G(D;)icr | é(w) =Y},

Hy™Y = {fw,m] € Hy | (', wVj') = (z.9)},

Y xY be arectangular band, that is, a semigroup with the operation (z,y)(a,b) =
(z,b). Tt is easy to see that Hy is a subdimonoid of G(D;)ie; and H™Y is a
subdimonoid of Hy .

In terms of dibands of subdimonoids (see, e.g., [4]) we obtain the following
structure theorem.

Theorem 3.1. The free product CVJ(DZ-)iGI of dimonoids (D;,0;,%;),i € I, is a
semilattice B(I) of subdimonoids Hy,Y € B(I). Every dimonoid Hy,Y € B(I),
is a rectangular band Y XY of subdimonoids Hl(,z’y), (r,y) €Y x Y.

Proof. Assuming
i fw,m] — é(w),

we obtain a homomorphism from G(D;)er to B(I) as
S(wxu) = é(w) Ué(u)

for all w,u € Fr[(D;,0;)]scr and % € {o, x}. Hence, G(D;);c; is a semilattice B(I)
of subdimonoids Hy,Y € B(I).
Now we shall prove the second part of the theorem.
Let
m:Hy =Y xY: [w,m]— (w®j whj).
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As
(wxu) Q5" = w5, (wru)Dj =uDj
for all w,u € Fr[(D;,o;)]icr and * € {o,*}, then 7 is a homomorphism. From
here, Hy is a rectangular band Y x Y of subdimonoids H)(,””’y)7 (r,y) €Y xY. O

We finish this section with the description of some congruence on é(Di)ie I
when o; = x; for all 1 € I.
First observe that if o; = x; for all ¢ € I, then ~ is the diagonal of G(S;)ier
and G(S;)icr/ ~ is identified with G(S;);cs. It is clear that in this case o = .
y Let « be an arbitrary fixed congruence on Fr[S;];c;. Define a relation & on
G(Si)ier by
[wy, m1]Gws, ma] < wiaws

for all (w1, ma], [wa, m2] € G(Si)ier-
It is not difficult to prove the following lemma.

Lemma 3.2. The relation & is a congruence on the dimonoid é(Si)iel and ope-
rations of the quotient dimonoid G(S;)icr/& coincide.

From Lemma 3.2 we obtain

Corollary 3.3. If a is the diagonal of Fr[S]ics, then G(S;)icr/a is the free
product of semigroups.

Note that Theorem 3.1, Lemma 3.2 and Corollary 3.3 extend, respectively,
Theorem 3, Lemma 5 and Corollary 1 from [3].
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