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are given. The independence of axioms of a strong doppelsemigroup is 
established. A free product in the variety of doppelsemigroups is presented. 
We also construct a free (strong) doppelsemigroup, a free commutative 
(strong) doppelsemigroup, a free n-nilpotent (strong) doppelsemigroup, 
a free n-dinilpotent (strong) doppelsemigroup and a free left n-dinilpotent 
doppelsemigroup. Moreover, the least commutative congruence, the 
least n-nilpotent congruence, the least n-dinilpotent congruence on a free 
(strong) doppelsemigroup and the least left n-dinilpotent congruence on 
a free doppelsemigroup are characterized. The book addresses graduate 
students, post-graduate students, researchers in algebra and interested 
readers.

A
na

to
lii

 V
. Z

hu
ch

ok
: R

el
at

iv
el

y 
Fr

ee
 D

op
pe

ls
em

ig
ro

up
s

ISSN 2199-4951
ISBN 978-3-86956-427-2



 



Lectures in Pure and Applied Mathematics 



 



Lectures in Pure and Applied Mathematics | 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Anatolii V. Zhuchok 
 

Relatively Free Doppelsemigroups 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Potsdam University Press 



Bibliographic information published by the Deutsche Nationalbibliothek 
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; 
detailed bibliographic data are available in the Internet  
at http://dnb.dnb.de. 
 
 
 
 
 
 
 
 
 
 
Potsdam University Press 2018 
http://verlag.ub.uni-potsdam.de/ 
 
Am Neuen Palais 10, 14469 Potsdam 
Tel.: +49 (0)331 977 2533 / Fax: 2292 
E-Mail: verlag@uni-potsdam.de 
 
The series Lectures in Pure and Applied Mathematics is edited by the Institute of 
Mathematics of the University of Potsdam. 
 
ISSN (print) 2199-4951 
ISSN (online) 2199-496X 
 
Contact:  
Institut für Mathematik 
Am Neuen Palais 10 
14469 Potsdam 
Tel.: +49 (0)331 977 1028 
WWW: http://www.math.uni-potsdam.de 
 
Cover images: 
1. Thomas Roese, ZIM | Building of the Institute at Campus Golm 
2. Nicolas Curien, Wendelin Werner | Random hyperbolic triangulation 
Published at: Journal of the European Mathematical Society, Volume 15, Issue 4, 2013, pp. 
1309–1341, DOI: 10.4171/JEMS/393 
This work is licensed under a Creative Commons License: 
Attribution –  Share Alike 4.0 International 
To view a copy of this license visit 
http://creativecommons.org/licenses/by-sa/4.0/  
 
Published online at the Institutional Repository of the University of Potsdam: 
URN urn:nbn:de:kobv:517-opus4-407719 
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407719 
 
Simultaneously published in print: 
ISBN 978-3-86956-427-2 



Preface

The main objective of these lecture notes is the study of variety of doppelsemigroups. A
variety of algebras is a class of algebras closed under Cartesian products, homomorphic
images, and subalgebras. Equivalently, a variety is a class of algebras defined by some
family of identities. The study of varieties was initiated by Garrett Birkhoff in 1935, while
the term “variety” was introduced by Philip Hall in 1949. Many structures in general
algebra such as groups, semigroups, rings, Boolean algebras, dimonoids and etc. form a
variety. The free object in a variety over a set X is an algebra in the variety generated by
X and such that every mapping of X into any other algebra in the variety can be extended
to a homomorphism of the free object into that algebra. One of the key problems that
arise is the word problem for the variety. In order to study this problem, it is often useful
to know the structure of the free object in the variety. Free objects have many interesting
properties. The most deep results and problems of the variety theory are connected to the
investigation of concrete varieties and construction of relatively free algebras.

In general, relatively free objects in any variety of algebras are important in the study
of that variety and this has been true, particularly, in the study of doppelsemigroups. A
doppelalgebra is an algebra defined on a vector space with two binary linear associa-
tive operations. Doppelalgebras play a prominent role in algebraic K-theory. We con-
sider doppelsemigroups, that is, sets with two binary associative operations satisfying the
axioms of a doppelalgebra. Doppelsemigroups are a generalization of semigroups and
they related to such algebraic structures as duplexes, interassociative semigroups, restric-
tive bisemigroups, dimonoids, and trioids.

This book is devoted to the study of the structure of relatively free doppelsemigroups.
The results form the variety theory of algebraic systems, develop the theory of interasso-
ciative semigroups and they can be applied to constructing relatively free doppelalgebras.
The material is mainly based on the results obtained by the author in [44, 46, 48, 53]. The
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lecture notes offers promising results for future research in the variety theory of algebraic
systems.

The lecture course is mainly oriented on students and Ph.D students, specialized in
Algebra, and on specialists in the variety theory of algebras. A prerequisite needed for
reading this book is knowledge of basic facts from semigroup theory and universal al-
gebra. For a more extended reading in this direction we recommend [5, 6, 15, 19, 20, 30].

To simplify the understanding, results are given with the proofs. Rather, the exposi-
tion is focused on acquaintance with main ideas and approaches of the variety theory of
algebraic systems. Standard technical details from universal algebra are used. After the
main theorems, I give exercises for readers. At the end of each chapter, I try to give more
historical information, more motivations and references for further development. The
book will be very useful for persons beginning to study semigroup theory and universal
algebra.

The contents of the book is the subject of a mini-course on universal algebra that I
delivered at the University of Potsdam to Ph.D students in Fall 2017. I would like to
express my sincere gratitude to PD Dr. Jörg Koppitz for helpful remarks which improved
the presentation.



Contents

Preface v

1 Examples and the independence of axioms 1
1.1 Examples of doppelsemigroups . . . . . . . . . . . . . 1
1.2 Examples of strong doppelsemigroups . . . . . . . . . . . 7
1.3 The independence of axioms of a strong doppelsemigroup . . . . 10

2 Structure of free doppelsemigroups 15
2.1 Free products and free doppelsemigroups . . . . . . . . . . 15
2.2 Free commutative and free n-nilpotent doppelsemigroups . . . . 22
2.3 Free n-dinilpotent doppelsemigroups . . . . . . . . . . . . 30
2.4 Free left n-dinilpotent doppelsemigroups . . . . . . . . . . 37

3 Structure of free strong doppelsemigroups 51
3.1 Free strong doppelsemigroups . . . . . . . . . . . . . . 51
3.2 Free n-dinilpotent strong doppelsemigroups . . . . . . . . . 56
3.3 Free commutative and free n-nilpotent strong doppelsemigroups. . 63
3.4 The least congruences on a free strong doppelsemigroup . . . . 67

Bibliography 71

Index 77

vii





Chapter 1

Examples and the
independence of axioms

In this chapter, we give numerous examples of doppelsemigroups and of strong dop-
pelsemigroups, and establish the independence of axioms of a strong doppelsemigroup.

1.1 Examples of doppelsemigroups

In this section, we give examples of doppelsemigroups.
Let us start with a description of a problem we will study.
Let R be a class of universal algebras. It is well known that the free object in R always

exists if R is a variety of universal algebras. The problem is to construct the free object
for a given variety. Free algebras play an important role in the study of algebras, since
every algebra is a homomorphic image of some free algebra. Therefore, we may acquire
thorough knowledge of properties of every concrete algebra studying the properties of
free algebras.

The main aim of the lecture notes is to present free objects in some varieties of algebras.
We begin with precise definitions.

Definition 1.1.1 ([48]). A doppelsemigroup is a nonempty set equipped with two binary
operations a and ` satisfying the axioms

(xa y)` z = xa (y` z), (D1)

1



2 1 Examples and the independence of axioms

(x` y)a z = x` (ya z), (D2)

(xa y)a z = xa (ya z), (D4)

(x` y)` z = x` (y` z). (D5)

Definition 1.1.2 ([53]). A doppelsemigroup (D,a,`) is called strong if it satisfies the
axiom

xa (y` z) = x` (ya z). (D3)

The class of all (strong) doppelsemigroups is a variety. It is natural to raise the problem
of constructing doppelsemigroups which are free in the variety V of (strong) doppelsemi-
groups and in the subvarieties of V . We will solve this problem in the following chapters.

The following example shows relationships between doppelsemigroups and semi-
groups.

Example 1.1.3. Let (D,a,`) be a doppelsemigroup. If the operations a and ` of (D,a,`)
coincide, then the doppelsemigroup becomes a semigroup. Thus, every semigroup can
be considered as a doppelsemigroup and doppelsemigroups are a generalization of semi-
groups.

Motivated by the problems of algebraic K-theory, J.-L. Loday introduced the notion of
a dimonoid.

Definition 1.1.4 ([24]). A dimonoid is a nonempty set equipped with two binary associa-
tive operations a and ` satisfying the axioms (D2) and

(xa y)a z = xa (y` z), (xa y)` z = x` (y` z).

For an extensive information on dimonoids see [38, 40].

Definition 1.1.5 ([37]). A dimonoid is called commutative if both its operations are com-
mutative.

The following statement establishes relationships between doppelsemigroups and di-
monoids.

Proposition 1.1.6. Every commutative dimonoid is a doppelsemigroup.
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So, the variety of commutative dimonoids is a subclass of the variety of doppelsemi-
groups. Examples of commutative dimonoids can be found in [37, 40, 41]. The con-
nection between commutative dimonoids and doppelsemigroups was established in [49].
Free dimonoids were constructed in [24] and [42].

Exercise 1.1.7. Prove that every commutative dimonoid is a doppelsemigroup.

Remark 1.1.8. The considerations in this manuscript are restricted to doppelsemigroups;
however, it is natural to study the problem of the construction of free objects for the
variety of dimonoids (see, e.g., [52]).

For constructing new doppelsemigroups let us consider one class of semigroups.
Let S be a semigroup and a ∈ S. Define a new binary operation ◦a on S by x◦a y = xay

for all x,y ∈ S. Then ◦a is associative and hence (S,◦a) is a semigroup [17]. The semi-
group (S,◦a) is called a variant of S, or, alternatively, the sandwich semigroup of S with

respect to the sandwich element a, or the semigroup with deformed multiplication. The
operation ◦a is usually called the sandwich operation.

Lemma 1.1.9. Let S be a semigroup and let a,b ∈ S. Then (S,◦a,◦b) is a doppelsemi-

group.

Proof. The proof follows by a direct verification.

Exercise 1.1.10. Prove Lemma 1.1.9.

The notion of a left (right) translation plays an important role for the description of the
structure of semigroups. Recall definitions.

Definition 1.1.11 ([6]). A transformation λ (ρ) of a semigroup S is called a left (right)

translation if (xy)λ = xλy ((xy)ρ = x(yρ)) for any x,y ∈ S.

Using one-sided translations, we can construct doppelsemigroups.

Proposition 1.1.12. Let S be a semigroup and let λ1,λ2 be left translations of S, ρ1,ρ2

right translations of S and λ1ρ1 = ρ1λ1, λ2ρ2 = ρ2λ2, λ2ρ1 = ρ1λ2, λ1ρ2 = ρ2λ1. Then

S with operations a and `, defined by

xa y := xρ1(yλ1) and x` y := xρ2(yλ2)

for all x,y ∈ S, is a doppelsemigroup.
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Proof. For any x,y,z ∈ S, using conditions of our proposition, we obtain

(xa y)a z = (xρ1(yλ1))a z = (xρ1(yλ1))ρ1(zλ1)

= xρ1(yλ1ρ1)(zλ1) = xρ1(yρ1λ1)(zλ1)

= xρ1(yρ1(zλ1))λ1 = xa (yρ1(zλ1)) = xa (ya z),

(xa y)` z = (xρ1(yλ1))` z = (xρ1(yλ1))ρ2(zλ2)

= xρ1(yλ1ρ2)(zλ2) = xρ1(yρ2λ1)(zλ2)

= xρ1(yρ2(zλ2))λ1 = xa (yρ2(zλ2)) = xa (y` z),

(x` y)a z = (xρ2(yλ2))a z = (xρ2(yλ2))ρ1(zλ1)

= xρ2(yλ2ρ1)(zλ1) = xρ2(yρ1λ2)(zλ1)

= xρ2(yρ1(zλ1))λ2 = x` (yρ1(zλ1)) = x` (ya z)

and

(x` y)` z = (xρ2(yλ2))` z = (xρ2(yλ2))ρ2(zλ2)

= xρ2(yλ2ρ2)(zλ2) = xρ2(yρ2λ2)(zλ2)

= xρ2(yρ2(zλ2))λ2 = x` (yρ2(zλ2)) = x` (y` z).

The doppelsemigroup obtained in Proposition 1.1.12 is denoted by Sλ1,λ2
ρ1,ρ2 .

Let D = (D,a,`) be an arbitrary doppelsemigroup and let I, J be arbitrary nonempty
sets for which the map

p : J× I→ D : ( j, i) 7→ ( j, i)p = p ji

is defined. Consider operations a′ and `′ on D′ := I×D× J defined by

(i,a, j)a′ (k,b, t) := (i,aa p jk ab, t),

(i,a, j)`′ (k,b, t) := (i,a` p jk `b, t)

for all (i,a, j),(k,b, t) ∈ D′. The algebra (D′,a′,`′) is denoted by Dop(I,D,J; p).



1.1 Examples of doppelsemigroups 5

Proposition 1.1.13. Dop(I,D,J; p) is a doppelsemigroup.

Proof. Let (i,a, j), (k,b, t), (l,c,m) be arbitrary elements of Dop(I,D,J; p). Then

((i,a, j)a′ (k,b, t))a′ (l,c,m) = (i,aa p jk ab, t)a′ (l,c,m)

= (i,(aa p jk ab)a ptl a c,m) = (i,aa p jk a (ba ptl a c),m)

= (i,a, j)a′ (k,ba ptl a c,m) = (i,a, j)a′ ((k,b, t)a′ (l,c,m))

by the associativity of the operation a. Moreover,

((i,a, j)a′ (k,b, t))`′ (l,c,m) = (i,aa p jk ab, t)`′ (l,c,m)

= (i,(aa p jk ab)` ptl ` c,m) = (i,((aa p jk)ab)` (ptl ` c),m)

= (i,(aa p jk)a (b` (ptl ` c)),m) = (i,a, j)a′ (k,b` ptl ` c,m)

= (i,a, j)a′ ((k,b, t)`′ (l,c,m))

according to the associativity of operations a, ` and the axiom (D1). Similarly, the
associativity of `′ and the axiom (D2) can be checked.

Thus, Dop(I,D,J; p) is a doppelsemigroup.

Exercise 1.1.14. Prove that the associativity of `′ and the axiom (D2) are satisfied in
Dop(I,D,J; p).

Observe that if operations of a doppelsemigroup D coincide and it is a group G, then
we obtain a Rees semigroup Dop(I,G,J; p) of the matrix type [6]. So, Dop(I,D,J; p)

generalizes the semigroup Dop(I,G,J; p). The doppelsemigroup Dop(I,D,J; p) is called
a Rees doppelsemigroup [48]. The Rees-Sushkevich theorem [6] states that a semigroup
is completely 0-simple if and only if it is isomorphic to a Rees semigroup of the matrix
type. In connection with this fact the following question naturally appears.

Open Problem 1.1.15. Obtain an analog of the Rees-Sushkevich theorem for semigroups
in the class of doppelsemigroups.

Using sandwich operations, we obtain the following example of a doppelsemigroup.

Example 1.1.16. Let (D,a,`) be a doppelsemigroup and a,b ∈ D. Define operations aa

and `b on D by
xaa y := xaaa y and x`b y := x`b` y
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for all x,y ∈ D. By a direct verification, (D,aa,`b) is a doppelsemigroup.

The doppelsemigroup (D,aa,`b) is called a variant of (D,a,`), or, alternatively, the
sandwich doppelsemigroup of (D,a,`) with respect to the sandwich elements a and b, or
the doppelsemigroup with deformed multiplications [46].

Example 1.1.17. The direct product ∏i∈I Di of doppelsemigroups Di, i ∈ I, is a dop-
pelsemigroup since the class of all doppelsemigroups is a variety.

Definition 1.1.18. An element 0 of a doppelsemigroup (D,a,`) is called zero if
x∗0 = 0 = 0∗ x for all x ∈ D and ∗ ∈ {a,`}.

Now we give one class of doppelsemigroups with zero.

Let D = (D,a,`) be an arbitrary doppelsemigroup and let I be an arbitrary nonempty
set. Define operations a′ and `′ on D′ := (I×D× I)∪{0} by

(i,a, j)∗′ (k,b, t) :=

(i,a∗b, t) if j = k,

0 if j 6= k

and
(i,a, j)∗′ 0 := 0∗′ (i,a, j) := 0∗′ 0 := 0

for all (i,a, j),(k,b, t) ∈ D′ \ {0} and ∗ ∈ {a,`}. The algebra (D′,a′,`′) is denoted by
B(D, I).

Proposition 1.1.19. B(D, I) is a doppelsemigroup with zero.

Proof. The proof is similar to the proof of Proposition 1 from [43].

Exercise 1.1.20. Prove Proposition 1.1.19.

Observe that if operations of a doppelsemigroup D coincide and it is a group G, then
any Brandt semigroup [6] is isomorphic to some semigroup B(G, I). So, B(D, I) genera-
lizes the semigroup B(G, I). The doppelsemigroup B(D, I) is called a Brandt doppelsemi-

group.
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1.2 Examples of strong doppelsemigroups

In this section, we consider examples of strong doppelsemigroups.

Example 1.2.1. Every semigroup can be considered as a strong doppelsemigroup and
strong doppelsemigroups are a generalization of semigroups.

A collection of constructions of relatively free dimonoids was given in [52]. In [54],
it was shown that any dimonoid is isomorphically embedded into some dimonoid con-
structed from a semigroup. The following example shows connections between strong
doppelsemigroups and commutative dimonoids.

Example 1.2.2. By [37, Lemma 2], every commutative dimonoid is a strong doppelsemi-
group. So, the variety of commutative dimonoids is a subclass of the variety of strong
doppelsemigroups. Examples of commutative dimonoids can be found in [37, 40, 41].

Let (D,a,`) be a doppelsemigroup and a,b ∈ D. Recall that the doppelsemigroup
(D,aa,`b) with operations, defined by

xaa y := xaaa y and x`b y := x`b` y

for all x,y ∈ D, is called a variant of (D,a,`) (see Example 1.1.16).

Proposition 1.2.3. Let (D,a,`) be a commutative strong doppelsemigroup. Then any

variant of (D,a,`) is a commutative strong doppelsemigroup.

Proof. The proof follows by a direct verification.

Exercise 1.2.4. Prove Proposition 1.2.3.

The proof of the following proposition follows from the proof of Proposition 1.1.12.

Proposition 1.2.5. Let S be a semigroup and let λ1,λ2 be left translations of S, ρ1,ρ2

right translations of S and λ1ρ1 = ρ1λ1, λ2ρ2 = ρ2λ2, λ2ρ1 = ρ1λ2, λ1ρ2 = ρ2λ1. Then

the doppelsemigroup Sλ1,λ2
ρ1,ρ2 is strong if and only if

xρ1(yρ2λ1)(zλ2) = xρ2(yρ1λ2)(zλ1)

for all x,y,z ∈ S.
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Exercise 1.2.6. Prove Proposition 1.2.5.

As usual, we denote the set of all positive integers by N. The following three lemmas
are needed for the sequel, namely, for solving the problem of constructing free objects in
the variety of doppelsemigroups.

Lemma 1.2.7. In a doppelsemigroup (D,a,`), for any 1 < n ∈ N, and any xi ∈ D,

1 6 i 6 n+1, and ∗ j ∈ {a,`}, 1 6 j 6 n, any parenthesizing of

x1 ∗1 x2 ∗2 . . .∗n xn+1

gives the same element from D.

Proof. The proof follows from the associativity of operations of a doppelsemigroup and
from its axioms.

Exercise 1.2.8. Prove Lemma 1.2.7.

Lemma 1.2.9. In a strong doppelsemigroup (D,a,`), for any n ∈N and any xi ∈D with

1 6 i 6 n+1, and ∗ j ∈ {a,`} with 1 6 j 6 n,

x1 ∗1 x2 ∗2 . . .∗n xn+1 = x1 ∗1π x2 ∗2π . . .∗nπ xn+1,

where π is a permutation of {1,2, . . . ,n}.

Proof. The proof follows from Lemma 1.2.7 and the axiom (D3) of a strong doppelsemi-
group.

Exercise 1.2.10. Prove Lemma 1.2.9.

Lemma 1.2.11. In a strong doppelsemigroup (D,a,`), for any k,n ∈ N, and any xi ∈ D

with 1 6 i 6 k+n,

x1 ` . . .` xk a xk+1 a . . .a xk+n = x1 a . . .a xn+1 ` . . .` xn+k.

Proof. The proof follows from Lemma 1.2.9.

Exercise 1.2.12. Prove Lemma 1.2.11.
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It is natural to consider the question when a Rees doppelsemigroup is strong.
Let Dop(I,D,J; p) be a Rees doppelsemigroup defined in Section 1.1. If D is a strong

doppelsemigroup, denote Dop(I,D,J; p) by SDop(I,D,J; p).

Proposition 1.2.13. SDop(I,D,J; p) is a strong Rees doppelsemigroup.

Proof. By Proposition 1.1.13, SDop(I,D,J; p) is a Rees doppelsemigroup.
Let (i,a, j), (k,b, t), (l,c,m) be arbitrary elements of SDop(I,D,J; p). Then

(i,a, j)`′ ((k,b, t)a′ (l,c,m)) = (i,a, j)`′ (k,ba ptl a c,m)

= (i,a` p jk ` (ba ptl a c),m) = (i,aa p jk a (b` ptl ` c),m)

= (i,a, j)a′ (k,b` ptl ` c,m) = (i,a, j)a′ ((k,b, t)`′ (l,c,m))

according to Lemmas 1.2.7 and 1.2.11. Thus, SDop(I,D,J; p) is a strong doppelsemi-
group.

The construction of SDop(I,D,J; p) generalizes a Rees semigroup of the matrix type
[6].

The concept of P-related semigroups was introduced by Hewitt and Zuckerman. Let
us recall the definition.

Definition 1.2.14 ([16]). Semigroups (D,a) and (D,`) are called P-related if

xa ya z = x` y` z

for all x,y,z ∈ D.

By [37, Lemma 2], the semigroups (D,a) and (D,`) of a commutative dimonoid
(D,a,`) are P-related.

Definition 1.2.15. If for a semigroup S, distinct a1, a2 do not exist such that a1x = a2x,
xa1 = xa2 for all x ∈ S, then S is called a weakly reductive semigroup.

By [14, Theorem 2], two P-related, weakly reductive semigroups defined on the same
set are strongly interassociative, that is, they satisfy the axioms (D1)–(D3). So, obtain

Proposition 1.2.16. If (D,a) and (D,`) are P-related, weakly reductive semigroups,

then (D,a,`) is a strong doppelsemigroup.
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1.3 The independence of axioms of a strong doppelsemigroup

The independence of axioms of the given axiomatic theory plays an important role for
constructing the theory. In this section, we prove the independence of axioms of a strong
doppelsemigroup.

Definition 1.3.1. A system of axioms ∑ is independent if any axiom α from ∑ can not
be deduced from the system of axioms ∑\{α}.

Lemma 1.3.2. Let X := {a,b,c,d,e, f ,g,h}. Define operations a and ` on X by

a`a := c,

a`b := aa c := caa := d,

a` c := c`a := f ,

b`a := g, aaa := b,

aab := baa := e,

ua v := u` v := h otherwise.

The model (X ,a,`) satisfies the axioms (D2)–(D5) but does not satisfy (D1).

Proof. Let x,y,z ∈ X with {x,y,z} 6= {a}. Then it is easy to verify that

(x` y)a z = x` (ya z) = h,

(xa y)a z = xa (ya z) = h,

(x` y)` z = x` (y` z) = h,

xa (y` z) = x` (ya z) = h.

So, it remains to check the cases where only a appears in the terms. We have

(a`a)aa = caa = d = a`b = a` (aaa),

(aaa)aa = baa = e = aab = aa (aaa),

(a`a)`a = c`a = f = a` c = a` (a`a),

aa (a`a) = aa c = d = a`b = a` (aaa).
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This shows that the axioms (D2)–(D5) are satisfied. But the axiom (D1) is not valid in
(X ,a,`) since we have

aa (a`a) = aa c = d 6= g = b`a = (aaa)`a.

Lemma 1.3.3. Let X := {a,b,c,d,e, f ,g,h}. Define operations a and ` on X by

a`a := c,

a`b := b`a := aa c := e,

a` c := c`a := f ,

caa := g, aaa := b,

aab := baa := d,

ua v := u` v := h otherwise.

The model (X ,a,`) satisfies the axioms (D1), (D3)–(D5) but does not satisfy (D2).

Proof. The proof is similar to the proof of Lemma 1.3.2.

Exercise 1.3.4. Prove Lemma 1.3.3.

Lemma 1.3.5. Let N0 be the set of all positive integers with zero, and let

xa y := 2x, za0 := 0 := 0a z and z` c := 0

for all x,y ∈ N and all z,c ∈ N0. The model (N0,a,`) satisfies the axioms (D1)–(D3),
(D5) but does not satisfy (D4).

Proof. Indeed, for all z,c,a ∈ N0,

(za c)`a = 0 = za (c`a),

(z` c)aa = 0 = z` (caa),

za (c`a) = 0 = z` (caa),

(z` c)`a = 0 = z` (c`a).
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In addition, for all x,y,b ∈ N we get

(xa y)ab = 2xab = 4x 6= 2x = xa2y = xa (yab).

Lemma 1.3.6. Let N0 be the set of all positive integers with zero. Put

za c := 0, x` y := 2y and z`0 := 0 := 0` z

for all z,c ∈N0 and all x,y ∈N. The model (N0,a,`) satisfies the axioms (D1)–(D4) but

does not satisfy (D5).

Proof. The proof is similar to the proof of Lemma 1.3.5.

Exercise 1.3.7. Prove Lemma 1.3.6.

Lemma 1.3.8. Any doppelsemigroup which is not strong satisfies the axioms (D1), (D2),
(D4), (D5) but does not satisfy (D3).

Proof. Let F [X ] be the free semigroup on a set X and a,b ∈ F [X ]. Consider variants
(F [X ],◦a) and (F [X ],◦b) of the semigroup F [X ]. By Lemma 1.1.9, (F [X ],◦a,◦b) is a dop-
pelsemigroup. So, (F [X ],◦a,◦b) satisfies the axioms (D1), (D2), (D4), (D5). Moreover,
for all x,y,z ∈ F [X ] we get

x◦a (y◦b z) = x◦a (ybz) = xaybz 6= xbyaz = x◦b (yaz) = x◦b (y◦a z).

Thus, the axiom (D3) is not valid in (F [X ],◦a,◦b).

From Lemmas 1.3.2, 1.3.3, 1.3.5, 1.3.6 and 1.3.8 we obtain

Theorem 1.3.9. The system of axioms (D1)–(D5) is independent.

The independence of axioms of a doppelsemigroup proved in [46] follows from the
last theorem.

At the end of the chapter we give an information about interassociativity which is
closely related to doppelsemigroups.

The term interassociativity was introduced by Zupnik in [55] for groupoids. Recall
that two binary operations a and ` on a nonempty set S are interassociative if the axiom
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(D1) holds. This notion is useful in the investigation of functional equations for algeb-
raic systems. Later, using the Zupnik’s concept, Drouzy [7] defined interassociativity
for semigroups. Namely, a semigroup (D,`) is called an interassociate of a semigroup

(D,a) if the axioms (D1) and (D2) hold. So, a semigroup (D,`) is an interassociate of a
semigroup (D,a) if and only if the algebra (D,a,`) satisfies the following hyperidentity
of associativity [28, 29]: Λ(x,Φ(y,z)) = Φ(Λ(x,y),z). Such semigroups have been ex-
tensively studied over the past several decades. Some methods of constructing interasso-
ciates for semigroups were developed in [4]. Boyd and Gould [3] discussed the questions
about an isomorphism between interassociative semigroups. More recently, attention has
turned to the consideration of all interassociates of a monogenic semigroup [13], of the
free commutative semigroup [8, 12] and of the free semigroup on the two-element alpha-
bet [11]. Interassociates of bicyclic semigroups were studied in [9]. The construction of
a variant of a semigroup was proposed in [23] and studied later on for various classes of
semigroups by several authors, see, e.g., [17, 18, 27] and others. Variants of semigroups
play a special role for constructing interassociative semigroups. This confirms the fact
that two variants of a semigroup are interassociative. Moreover, if a semigroup (D,`) is
an interassociate of a monoid (D,a), then (D,`) is a variant of (D,a) (see [28], p. 133;
[29]). The main result of Drouzy’s paper [7] follows from here: Two interassociative
groups are isomorphic.

One of the kind of interassociativity is a strong interassociativity. This concept is of
significance in studying P-related semigroups [16]. Strong interassociativity for semi-
groups was introduced by Gould and Richardson [14]. Recall that a semigroup (D,`) is
called a strong interassociate of a semigroup (D,a) if (D,a,`) is a strong doppelsemi-
group. The class of all strong doppelsemigroups forms a subvariety of the variety of
doppelsemigroups. In particular, if (D,a,`) is a commutative doppelsemigroup, that is,
a doppelsemigroup with commutative operations, then a semigroup (D,`) is a strong
interassociate of a semigroup (D,a) (see [48], Lemma 4.1). The constructions of the
free strong doppelsemigroup, of the free n-dinilpotent strong doppelsemigroup, of the
free commutative strong doppelsemigroup and of the free n-nilpotent strong doppelsemi-
group will be presented in Chapter 3 (see also [53]).





Chapter 2

Structure of free
doppelsemigroups

In this chapter, we introduce the construction of a free product in the class of universal
algebras and present a free product in the variety of doppelsemigroups. As a consequence,
we obtain a free doppelsemigroup. We also construct and study some relatively free
doppelsemigroups and characterize the least congruences on a free doppelsemigroup.

2.1 Free products and free doppelsemigroups

In this section, we give the definition of a free product in the class of algebras. Then,
using this definition, we construct a free product of doppelsemigroups and, as a conse-
quence, obtain a free doppelsemigroup of an arbitrary rank. This result generalizes the
construction of the free doppelsemigroup of rank 1 presented in [31, 32]. We also estab-
lish that the semigroups of the constructed free doppelsemigroup are isomorphic and the
automorphism group of the free doppelsemigroup is isomorphic to the symmetric group.

Definition 2.1.1. Let R be a class of universal algebras Aβ , β ∈Ω. A free product in the

class R of algebras Aβ , β ∈Ω, is an algebra A from the class R which contains all Aβ as
subalgebras and such that any family of homomorphisms of algebras Aβ into any algebra
B from R can be extended to a homomorphism of the algebra A into B.

15
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It is well known (see, e.g., [21, 36]) that the free product in R always exists if R is a va-
riety of universal algebras, and every free algebra is the free product of one-generated
free algebras. The structure of one-generated free doppelsemigroups was described
in [31, 32]. So, having the construction of the free product of doppelsemigroups and,
using one-generated free doppelsemigroups, we can obtain a free doppelsemigroup of an
arbitrary rank.

In order to construct a free product of doppelsemigroups we need to use a free product
of semigroups. Recall the construction of a free product of semigroups.

Proposition 2.1.2. Let {Si}i∈I be a family of arbitrary pairwise disjoint semigroups Si,

i ∈ I, and FR the set of all such finite nonempty sequences a1a2 . . .ak that if a j ∈ Si j ,

1≤ j ≤ k, then i j 6= i j+1, 1≤ j ≤ k−1. Define the operation • on FR by

a1a2 . . .ak •b1b2 . . .bs

:=

a1a2 . . .akb1b2 . . .bs if ak ∈ Si, b1 ∈ S j, i 6= j,

a1a2 . . .ak−1(ak ·b1)b2 . . .bs if ak, b1 ∈ Si, “ ·” is the operation on Si, i ∈ I.

The set FR with respect to this operation is a semigroup.

This semigroup is called the free product of semigroups Si, i ∈ I.

Exercise 2.1.3. Prove that (FR,•) is a semigroup.

Now we are ready to solve the problem of constructing a free product of doppelsemi-
groups.

Let Fr[Si]i∈I be the free product of arbitrary semigroups Si, i∈ I. For every w∈ Fr[Si]i∈I

denote the first (respectively, last) letter of w by w(0) (respectively, w(1)) and the length of
w by lw.

Let {(Di,ai,`i)}i∈I be a family of arbitrary pairwise disjoint doppelsemigroups, T the
free monoid on the two-element set {a,b} and θ ∈ T the empty word. The operations on
Fr[(Di,ai)]i∈I and Fr[(Di,`i)]i∈I are denoted by a and `, respectively. By definition, the
length lθ of θ is equal to 0. Define operations a′ and `′ on

Fr := {(w,u) ∈ Fr[(Di,ai)]i∈I×T | lw− lu = 1}
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by

(w1,u1)a′ (w2,u2) :=

(w1w2,u1 ◦a u2) if w(1)
1 ∈ Di, w(0)

2 ∈ D j, i, j ∈ I, i 6= j,

(w1 aw2,u1u2) if w(1)
1 ,w(0)

2 ∈ Di, i ∈ I

and

(w1,u1)`′ (w2,u2) :=

(w1w2,u1 ◦b u2) if w(1)
1 ∈ Di, w(0)

2 ∈ D j, i, j ∈ I, i 6= j,

(w1 `w2,u1u2) if w(1)
1 ,w(0)

2 ∈ Di, i ∈ I

for all (w1,u1),(w2,u2) ∈ Fr. The obtained algebra is denoted by FrD(Di)i∈I . Since
universes of Fr[(Di,ai)]i∈I and Fr[(Di,`i)]i∈I are equal, we can use Fr[(Di,`i)]i∈I instead
of Fr[(Di,ai)]i∈I in the definition of Fr.

If s = 1, we will regard the sequence y1y2 . . .ys−1 ∈ T as θ .

The main result of this section is the following.

Theorem 2.1.4. FrD(Di)i∈I is the free product of doppelsemigroups (Di,ai,`i), i ∈ I.

Proof. Using the associativity of the operation of a free product of semigroups, of a free
monoid and of sandwich operations ◦a, ◦b, one can directly check that FrD(Di)i∈I is
a doppelsemigroup. For each (Di,ai,`i), i ∈ I, we have

(Di,ai,`i)∼= Di := {(w,u) ∈ FrD(Di)i∈I | w ∈ Di}

and all doppelsemigroups Di, i∈ I, generate FrD(Di)i∈I . Moreover, from the definition of
FrD(Di)i∈I it follows that any its element has a unique representation in the form of the
product of a finite number of different elements from ∪i∈IDi.

In order to complete the proof we should check the condition of continuability of a ho-
momorphism. For every i ∈ I let

αi : (Di,ai,`i)→ (K,a′′,`′′)

be a homomorphism of (Di,ai,`i) into an arbitrary doppelsemigroup (K,a′′,`′′). Take
(zm1zm2 . . .zms ,y1y2 . . .ys−1) ∈ FrD(Di)i∈I , where zmk ∈ Dmk , 1 6 k 6 s, yp ∈ {a,b},
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1 6 p 6 s−1. Define a map

α : FrD(Di)i∈I → (K,a′′,`′′)

by

ωα :=


zm1αm1 ỹ1zm2αm2 ỹ2 . . . ỹs−1zmsαms if ω = (zm1zm2 . . .zms ,y1y2 . . .ys−1),

s > 1,

zm1αm1 if ω = (zm1 ,θ),

where

ỹp :=

a′′ if yp = a,

`′′ if yp = b

for all 1 6 p 6 s−1, s > 1. According to Lemma 1.2.7 α is well-defined.

Using homomorphisms αi, i ∈ I, one can show that α is a homomorphism continuing
αi, i ∈ I. Thus, FrD(Di)i∈I is the free product of doppelsemigroups (Di,ai,`i), i ∈ I.

Exercise 2.1.5. Show that the map α defined in the proof of the previous theorem is
a homomorphism continuing αi, i ∈ I.

Remark 2.1.6. Consider separately the set Fr[(Di,ai)]i∈I with operations ≺′ and �′ de-
fined by the rules

w1≺′w2 :=

w1w2 if w(1)
1 ∈ Di, w(0)

2 ∈ D j, i, j ∈ I, i 6= j,

w1 aw2 if w(1)
1 ,w(0)

2 ∈ Di, i ∈ I

and

w1�′w2 :=

w1w2 if w(1)
1 ∈ Di, w(0)

2 ∈ D j, i, j ∈ I, i 6= j,

w1 `w2 if w(1)
1 ,w(0)

2 ∈ Di, i ∈ I

for all w1,w2 ∈ Fr[(Di,ai)]i∈I . From the proof of Theorem 2.1.4 it follows that
(Fr[(Di,ai)]i∈I ,≺′,�′) is a doppelsemigroup. This doppelsemigroup is generated by
∪i∈IDi but it is not a free product of doppelsemigroups (Di,ai,`i), i ∈ I. Indeed, any
element xy∈ Fr[(Di,ai)]i∈I , where x∈Di, y∈D j, i 6= j, can be written as x≺′ y and x�′ y
that contradicts the uniqueness of representation of elements of the free product.
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Further we are going to show that the constructions of a free product of doppelsemi-
groups and of a free product of dimonoids are different. Let us recall the construction of
a free product of dimonoids [47].

Let Fr[Si]i∈X be the free product of arbitrary semigroups Si, i ∈ X . Consider the set

G(Si)i∈X := {(w,m) ∈ Fr[Si]i∈X ×N | lw ≥ m}.

For all (w,m) ∈ G(Si)i∈X and u ∈ Fr[Si]i∈X let

f u
(w,m) :=

lu +m if lu(1)w(0) = 2,

lu +m−1 if lu(1)w(0) = 1.

For a given relation ρ on a dimonoid (D,a,`) (see Definition 1.1.4), the congruence

generated by ρ is the least congruence on (D,a,`) containing ρ . It is denoted by ρ? and
can be characterized as the intersection of all congruences on (D,a,`) containing ρ .

Let {(Di,ai,`i)}i∈X be a family of arbitrary pairwise disjoint dimonoids. The opera-
tions on Fr[(Di,ai)]i∈X and Fr[(Di,`i)]i∈X are denoted by a and `, respectively. For every
i ∈ X consider a relation

θi = {(a`i b,aai b) | a,b ∈ Di}

on a dimonoid (Di,ai,`i). It is clear that operations of (Di,ai,`i)/θ ?
i coincide and it is a

semigroup.

Let ω1 = (x1x2 . . .xk . . .xs, t), ω2 = (y1y2 . . .yk . . .yp,r) ∈ G((Di,ai))i∈X , where

x1,x2, . . . ,xk, . . . ,xs,y1,y2, . . . ,yk, . . . ,yp ∈
⋃
i∈X

Di.

Define a relation ∼ on G((Di,ai))i∈X by

ω1 ∼ ω2

if and only if

s = p, t = r, xkθ
?
jk yk for all 1≤ k ≤ s and some jk ∈ X , and xt = yr.

It is not hard to check that ∼ is an equivalence relation. Denote the equivalence
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class of ∼ containing an element (w,m) ∈ G((Di,ai))i∈X by [w,m] and the quotient set
G((Di,ai))i∈X/∼ by G?((Di,ai))i∈X .

Define operations a′ and `′ on G?((Di,ai))i∈X by

[w1,m1]a′ [w2,m2] := [w1 aw2,m1],

[w1,m1]`′ [w2,m2] := [w1 `w2, f w1
(w2,m2)

]

for all [w1,m1], [w2,m2] ∈ G?((Di,ai))i∈X . The algebra (G?((Di,ai))i∈X ,a′,`′) is de-
noted by Ğ(Di)i∈X .

Theorem 2.1.7 ([47], Theorem 2.3). Ğ(Di)i∈X is the free product of dimonoids (Di,ai,`i),

i ∈ X.

Remark 2.1.8. We constructed the free product of doppelsemigroups using the Cartesian
product of the free product of semigroups and the free monoid on the two-element set. In
contrast, the free product of dimonoids was constructed from a free product of semigroups
and the set of all positive integers, and using some factorization. Since the axioms of
a dimonoid and of a doppelsemigroup are different, the details of the constructions are
also different.

Our next task is to obtain a free object in the variety of doppelsemigroups. Recall the
construction of a free semigroup.

Let X be an arbitrary nonempty set. Let us denote by F [X ] the set of all nonempty
finite words a1a2 . . .am in the alphabet X . A binary operation is defined on F [X ] by
juxtaposition:

(a1a2 . . .am)(b1b2 . . .bn) := a1a2 . . .amb1b2 . . .bn.

With respect to this operation F [X ] is a semigroup, called the free semigroup on X . The
set X is called the generating set of F [X ].

Let F[X ] be the free semigroup on X . Define operations ≺ and � on

F := {(w,u) ∈ F[X ]×T | lw− lu = 1}

by
(w1,u1)≺ (w2,u2) := (w1w2,u1 ◦a u2), (2.1)

(w1,u1)� (w2,u2) := (w1w2,u1 ◦b u2) (2.2)
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for all (w1,u1),(w2,u2) ∈ F . The obtained algebra is denoted by FDS(X).

Theorem 2.1.9. FDS(X) is the free doppelsemigroup.

Proof. Let {(Di,ai,`i)}i∈I be a family of pairwise disjoint one-generated free dop-
pelsemigroups. It is known [31, 32] that for each i∈ I, (Di,ai,`i)∼= (T,◦a,◦b). Since any
free algebra is the free product of one-generated free algebras, we obtain that the free dop-
pelsemigroup of rank n is the free product FrD(Di)i∈I of doppelsemigroups (Di,ai,`i),
i ∈ I, where |I|= n.

It is immediate to check that FDS(X) is a doppelsemigroup. Let us show that
FrD(Di)i∈I ∼= FDS(X) if |I|= |X |.

If X = {r}, one easily proves that the map

(T,◦a,◦b)→ FDS(X) : u 7→ (rlu+1,u)

is an isomorphism. Thus, for each i ∈ I and |X | = 1, (Di,ai,`i) ∼= FDS(X). Further for
every x ∈ X assume Γx = FDS({x}).

Consider the free product of doppelsemigroups Γx,x ∈ X , and for convenience, denote
it by (Γx)x∈X . By the construction of the free product from Theorem 2.1.4, elements of
(Γx)x∈X have the form

((xk1
1 ,u1)(x

k2
2 ,u2) . . .(xks

s ,us),y1y2 . . .ys−1),

where x j ∈ X , k j ∈ N, u j ∈ T , 1 6 j 6 s, yp ∈ {a,b}, 1 6 p 6 s− 1 and x j 6= x j+1 for
1 6 j 6 s−1. Define a map ϖ : (Γx)x∈X → FDS(X) by the rule

((xk1
1 ,u1)(x

k2
2 ,u2) . . .(xks

s ,us),y1y2 . . .ys−1) 7→ (xk1
1 xk2

2 . . .xks
s ,u1y1u2y2 . . .ys−1us).

An immediate verification shows that ϖ is an isomorphism. So, FDS(X) is the free
doppelsemigroup.

This result generalizes the construction of the free doppelsemigroup of rank 1 presented
in [31, 32].

Exercise 2.1.10. Show that the map ϖ defined in the proof of the previous theorem is
an isomorphism.
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Remark 2.1.11. Theorem 2.1.9 can be also proved by the following standard method.
Firstly, we can prove that FDS(X) is a doppelsemigroup generated by X × {θ} and,
secondly, that every map of X ×{θ} into any other doppelsemigroup can be uniquely
extended to a homomorphism of FDS(X) into that doppelsemigroup.

The following lemma establishes a relationship between both semigroups of the free
doppelsemigroup FDS(X) (see also [8]).

Lemma 2.1.12. The semigroups (F,≺) and (F,�) are isomorphic.

Exercise 2.1.13. Show that the semigroups (F,≺) and (F,�) are isomorphic.

Denote the symmetric group on X by ℑ[X ] and the automorphism group of a dop-
pelsemigroup D′ by AutD′. Since the set X ×{θ} is generating for FDS(X), we obtain
the following description of the automorphism group of the free doppelsemigroup.

Lemma 2.1.14. AutFDS(X)∼= ℑ[X ].

Exercise 2.1.15. Prove Lemma 2.1.14.

Free doppelsemigroups play an important role in studying interassociativity for semi-
groups since every doppelsemigroup is a homomorphic image of the free doppelsemi-
group. Therefore, we may obtain new pairs of interassociative semigroups via construc-
ting congruences on free doppelsemigroups.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

2.2 Free commutative and free n-nilpotent doppelsemigroups

In this section, we consider doppelsemigroups with both commutative operations and
study the nilpotency in doppelsemigroups. As a result, we construct a free doppelsemi-
group in the variety of commutative (n-nilpotent) doppelsemigroups. We also characte-
rize some least congruences on a free doppelsemigroup, study relationships between the
semigroups of the constructed free algebras and describe the automorphism groups of the
free algebras.

We start with the definition of the free commutative semigroup.

Let X = {w1,w2, . . . ,wn} be a finite set. Let us denote by F∗[X ] the set of all nonempty
finite words w = wα1

1 wα2
2 ...wαn

n , where α1, α2, ..., αn ∈ N∪{0} are not simultaneously
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equal to zero. Here w0
i ,1≤ i≤ n, is the empty word and w1 = w for all w ∈ X . A binary

operation is defined on F∗[X ] by the rule

(wα1
1 wα2

2 ...wαn
n )(wβ1

1 wβ2
2 ...wβn

n ) := wα1+β1
1 wα2+β2

2 ...wαn+βn
n .

With respect to this operation F∗[X ] is a semigroup, called the free commutative semi-

group on X . The set X is called the generating set of F∗[X ]. Similarly, the free commuta-
tive semigroup generated by an infinite set is defined.

The free commutative semigroup will be useful for constructing a free object in the
variety of commutative doppelsemigroups.

Definition 2.2.1. A doppelsemigroup (D,a,`) is called commutative if both semigroups
(D,a) and (D,`) are commutative.

Definition 2.2.2. A doppelsemigroup (D,a,`) with zero 0 is called nilpotent if for some
n ∈ N and any xi ∈ D, 1 6 i 6 n+1, and ∗ j ∈ {a,`}, 1 6 j 6 n,

x1 ∗1 x2 ∗2 . . .∗n xn+1 = 0.

The least such n is called the nilpotency index of (D,a,`). For k ∈ N a nilpotent dop-
pelsemigroup of nilpotency index 6 k is called k-nilpotent.

It is obvious that operations of any 1-nilpotent doppelsemigroup coincide and it is
a zero semigroup.

Observe that the class of all commutative (n-nilpotent) doppelsemigroups forms a sub-
variety of the variety of doppelsemigroups.

Definition 2.2.3. A doppelsemigroup which is free in the variety of commutative
(n-nilpotent) doppelsemigroups is called a free commutative (n-nilpotent) doppelsemi-

group.

Our problem is to construct a free commutative (n-nilpotent) doppelsemigroup. The
following two lemmas are needed for the sequel.

Lemma 2.2.4. In a commutative doppelsemigroup (D,a,`),

(x` y)a z = x` (ya z) = (xa y)` z = xa (y` z)
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for all x,y,z ∈ D.

Proof. For all x,y,z ∈ D, we have

(x` y)a z = za (x` y) = (za x)` y

= (xa z)` y = xa (z` y) = xa (y` z)

by the commutativity of a, ` and the axiom (D1).

Lemma 2.2.5. In a commutative doppelsemigroup (D,a,`), for any n ∈ N and any

xi ∈ D, 1 6 i 6 n+1, and ∗ j ∈ {a,`}, 1 6 j 6 n,

x1 ∗1 x2 ∗2 . . .∗n xn+1 = x1π ∗1 x2π ∗2 . . .∗n x(n+1)π

= x1 ∗1π ′ x2 ∗2π ′ . . .∗nπ ′ xn+1,

where π , π ′ are permutations of {1,2, . . . ,n+1} and {1,2, . . . ,n}, respectively.

Exercise 2.2.6. Using Lemmas 1.2.7, 2.2.4 and the commutativity of a, `, prove
Lemma 2.2.5.

In the construction of FDS(X) (see Section 2.1) instead of the free semigroup F[X ] on
X take the free commutative semigroup F∗[X ] on X and instead of the free monoid T on
{a,b} take the free commutative monoid T ∗ on {a,b} with the empty word θ . In this
case, denote by FDS∗(X) the algebra (F,≺,�) with operations defined by (2.1), (2.2).

We will write the sequence y1y2 . . .ys−1 ∈ T ∗ as θ if s = 1.

Theorem 2.2.7. FDS∗(X) is the free commutative doppelsemigroup.

Proof. The fact that FDS(X) is a doppelsemigroup implies that FDS∗(X) is a dop-
pelsemigroup too. Obviously, FDS∗(X) is commutative. It is clear from the definition
of FDS∗(X) that it is generated by X×{θ}.

Now let ρ ′ be a map of X × {θ} into an arbitrary commutative doppelsemigroup
(K,a,`). We wish to show that there exists a unique homomorphism χ extending ρ ′.

Consider a map ρ : X → K such that xρ = (x,θ)ρ ′ for all x ∈ X . Take

(x1x2 . . .xs,y1y2 . . .ys−1) ∈ FDS∗(X),
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where x j ∈ X , 1 6 j 6 s, yp ∈ {a,b}, 1 6 p 6 s−1. We now define a map

χ : FDS∗(X)→ (K,a,`)

by

ωχ :=

x1ρ ỹ1x2ρ ỹ2 . . . ỹs−1xsρ if ω = (x1x2 . . .xs,y1y2 . . .ys−1), s > 1,

x1ρ if ω = (x1,θ),

where

ỹp :=

a if yp = a,

` if yp = b

for all 1 6 p 6 s−1, s > 1. According to Lemmas 1.2.7 and 2.2.5 χ is well-defined.

One can show that χ is a homomorphism. It is clear that (x,θ)χ = (x,θ)ρ ′ for all
(x,θ) ∈ X ×{θ}. Since X ×{θ} generates FDS∗(X), we obtain that χ is unique. Thus,
FDS∗(X) is the free commutative doppelsemigroup.

Exercise 2.2.8. Show that the map χ defined in the proof of Theorem 2.2.7 is a homo-
morphism.

Theorem 2.2.7 gives us an idea that one-generated free commutative doppelsemigroups
have also other presentation. Thus, from Theorem 2.2.7 we obtain

Corollary 2.2.9. (T ∗,◦a,◦b) is the free commutative doppelsemigroup of rank 1.

Further we recall the well-known construction of the free n-nilpotent semigroup.

Fix n ∈ N. Let X be an arbitrary nonempty set and FN the set of all nonempty finite
words w1w2 . . .wm, where w1,w2, . . . ,wm ∈ X and m ≤ n. A binary operation is defined
on FN∪{0} by the rule

(w1w2 . . .wm)(ω1ω2 . . .ωk) :=

w1w2 . . .wmω1ω2 . . .ωk if m+ k 6 n,

0 if m+ k > n.

With respect to this operation FN∪{0} is a semigroup, called the free n-nilpotent semi-

group on X . The set X is called the generating set of FN∪{0}.
The problem is to extend this construction to the case of doppelsemigroups.
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Let Fn := {(w,u) ∈ FDS(X) | lw 6 n}∪{0}. Define operations a and ` on Fn by

(w1,u1)a (w2,u2) :=

(w1w2,u1 ◦a u2) if lw1w2 6 n,

0 if lw1w2 > n,

(w1,u1)` (w2,u2) :=

(w1w2,u1 ◦b u2) if lw1w2 6 n,

0 if lw1w2 > n

and
(w1,u1)∗0 := 0∗ (w1,u1) := 0∗0 := 0

for all (w1,u1),(w2,u2) ∈ Fn \ {0} and ∗ ∈ {a,`}. The algebra (Fn,a,`) is denoted by
FNDSn(X).

Theorem 2.2.10. FNDSn(X) is the free n-nilpotent doppelsemigroup.

Proof. Similarly to Theorem 1 from [43], the fact that FNDSn(X) is an n-nilpotent dop-
pelsemigroup can be proved.

Let us show that FNDSn(X) is free in the variety of n-nilpotent doppelsemigroups.

Let (K,a′,`′) be an arbitrary n-nilpotent doppelsemigroup and β : X → K an arbitrary
map. Define a map

µ : FNDSn(X)→ (K,a′,`′) : ω 7→ ωµ

as

ωµ :=



x1β ỹ1x2β ỹ2 . . . ỹs−1xsβ if ω = (x1x2 . . .xs,y1y2 . . .ys−1),

x j ∈ X ,1 6 j 6 s, yp ∈ {a,b},

1 6 p 6 s−1, s > 1,

x1β if ω = (x1,θ), x1 ∈ X ,

0 if ω = 0,

where

ỹp :=

a′ if yp = a,

`′ if yp = b

for all 1 6 p 6 s−1, s > 1. According to Lemma 1.2.7 µ is well-defined.

A direct verification shows that µ is a homomorphism.
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Exercise 2.2.11. Show that the map µ defined in the proof of Theorem 2.2.10 is a homo-
morphism.

The following problem is to find a more elegant version for the free n-nilpotent dop-
pelsemigroup of rank 1. Now we construct a doppelsemigroup which is isomorphic to
the free n-nilpotent doppelsemigroup of rank 1.

Fix n ∈ N and assume T n := {u ∈ T | lu +1 6 n}∪{0}. Define operations a and ` on
T n by

u1 au2 :=

u1 ◦a u2 if lu1u2 +2 6 n,

0 if lu1u2 +2 > n,

u1 `u2 :=

u1 ◦b u2 if lu1u2 +2 6 n,

0 if lu1u2 +2 > n

and
u1 ∗0 := 0∗u1 := 0∗0 := 0

for all u1,u2 ∈ T n \ {0} and ∗ ∈ {a,`}. The algebra (T n,a,`) is denoted by Tn. Ob-
viously, Tn is a doppelsemigroup.

Exercise 2.2.12. Prove that Tn is a doppelsemigroup.

Lemma 2.2.13. If |X |= 1, then Tn ∼= FNDSn(X).

Proof. Let X = {r}. An easy verification shows that a map

δ : Tn→ FNDSn(X),

defined by

uδ :=

(rlu+1,u) if u ∈ T n \{0},

0 if u = 0,

is an isomorphism.

Exercise 2.2.14. Show that Tn and FNDSn(X) are isomorphic if |X |= 1.

Let us discuss a relation between semigroups of the constructed free algebras and auto-
morphisms of the free algebras. The following two lemmas could be proved immediately.
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Lemma 2.2.15. The semigroups (F,≺) and (F,�) (respectively, (Fn,a) and (Fn,`)) of

FDS∗(X) (respectively, FNDSn(X)) are isomorphic.

Exercise 2.2.16. Prove that the semigroups (F,≺) and (F,�) as well (Fn,a) and (Fn,`)
indicated in the previous lemma are isomorphic.

Lemma 2.2.17. AutFDS∗(X)∼= AutFNDSn(X)∼= ℑ[X ].

Exercise 2.2.18. Show that the groups from Lemma 2.2.17 are isomorphic.

If f : D1 → D2 is a homomorphism of doppelsemigroups, the corresponding congru-
ence on D1 is denoted by ∆ f . If ρ is a congruence on a doppelsemigroup (D,a,`) such
that (D,a,`)/ρ is a commutative (n-nilpotent) doppelsemigroup, we say that ρ is a com-

mutative (n-nilpotent) congruence. By ? (◦, respectively) denote the operation on F∗[X ]

(on T ∗, respectively).

The least congruences on a free algebra play an important role for the description of
all congruences on this algebra. Now we present the least commutative (n-nilpotent)
congruence on a free doppelsemigroup.

Take (x1x2 . . .xs,y1y2 . . .ys−1),(a1a2 . . .ah,b1b2 . . .bh−1) ∈ FDS(X), where x j ∈ X ,
1 6 j 6 s, yp ∈ {a,b}, 1 6 p 6 s− 1, aq ∈ X , 1 6 q 6 h, bd ∈ {a,b}, 1 6 d 6 h− 1,
and define a relation ξ on FDS(X) by

(x1x2 . . .xs,y1y2 . . .ys−1)ξ (a1a2 . . .ah,b1b2 . . .bh−1)

if and only if

(x1 ? x2 ? . . . ? xs,y1 ◦ y2 ◦ . . .◦ ys−1) = (a1 ?a2 ? . . . ?ah,b1 ◦b2 ◦ . . .◦bh−1).

Define a relation ζn on FDS(X) by

(w1,u1)ζn(w2,u2)

if and only if

(w1,u1) = (w2,u2) or lw1 > n, lw2 > n.

Theorem 2.2.19. The relation ξ (ζn) is the least commutative (n-nilpotent) congruence

on the free doppelsemigroup FDS(X).
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Proof. Define a map τ : FDS(X)→ FDS∗(X) by

ωτ :=

(x1 ? x2 ? . . . ? xs,y1 ◦ y2 ◦ . . .◦ ys−1) if ω = (x1x2 . . .xs,y1y2 . . .ys−1), s > 1,

ω otherwise.

It is immediate to show that τ is a surjective homomorphism. By Theorem 2.2.7,
FDS∗(X) is the free commutative doppelsemigroup. Then ∆τ is the least commutative
congruence on FDS(X). From the definition of τ it follows that ∆τ = ξ .

Let us prove the second statement of the theorem.
Consider a map φn : FDS(X)→ FNDSn(X) defined by the rule

(w,u)φn :=

(w,u) if lw 6 n,

0 if lw > n,

where (w,u) ∈ FDS(X). Similarly to the proof of Theorem 4 from [43], the facts that φn

is a surjective homomorphism and ∆φn = ζn can be proved. According to Theorem 2.2.10
FNDSn(X) is the free n-nilpotent doppelsemigroup. So, ζn is the least n-nilpotent con-
gruence on FDS(X).

Exercise 2.2.20. Show that the map τ defined in the proof of the previous theorem is
a surjective homomorphism and ∆τ = ξ .

Exercise 2.2.21. Prove that the map φn defined in the proof of the previous theorem is
a surjective homomorphism and ∆φn = ζn.

Let us consider a relation between operations of a doppelsemigroup (D,a,`) in which
(D,a) or (D,`) is a rectangular band.

Definition 2.2.22. A semigroup is called a rectangular band if it satisfies the identity
xyx = x.

Note that operations of a doppelsemigroup (D,a,`) with a rectangular band (D,a) or
(D,`) coincide (see [3]).

Exercise 2.2.23. Prove that operations of a doppelsemigroup (D,a,`) with a rectangular
band (D,a) or (D,`) coincide.

We conclude this section with the description of an important property of commutative
doppelsemigroups.
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Lemma 2.2.24. Operations of a commutative doppelsemigroup (D,a,`) with idempotent

operations a and ` coincide.

Proof. From Lemma 2.2.4 it follows that (x`y)a z = (xay)` z for all x,y,z ∈D. Hence,
in the case x = y, using the idempotent property of a and `, obtain xa z = x` z.

• • • • • • • • • • • • • • • • • • • • • • •

2.3 Free n-dinilpotent doppelsemigroups

In this section, doppelsemigroups with both nilpotent semigroups are considered. We
define and study the variety of n-dinilpotent doppelsemigroups. The main purpose of
the section is to construct a free n-dinilpotent doppelsemigroup of an arbitrary rank and
characterize separately free n-dinilpotent doppelsemigroups of rank 1. Moreover, we
study some properties of a free n-dinilpotent doppelsemigroup and discuss one important
congruence on a free doppelsemigroup.

Recall the definition of a k-nilpotent semigroup (see also [40, 46, 52]). As usual, N
denotes the set of all positive integers.

Definition 2.3.1. A semigroup S is called nilpotent if Sn+1 = 0 for some n ∈N. The least
such n is called the nilpotency index of S. For k ∈ N a nilpotent semigroup of nilpotency
index 6 k is called k-nilpotent.

Let us introduce the notion of an n-dinilpotent doppelsemigroup.

Definition 2.3.2. A doppelsemigroup (D,a,`) with zero (see Definition 1.1.18) is called
dinilpotent if (D,a) and (D,`) are nilpotent semigroups.

Definition 2.3.3. A dinilpotent doppelsemigroup (D,a,`) is called n-dinilpotent if (D,a)
and (D,`) are n-nilpotent semigroups.

Note that operations of any 1-dinilpotent doppelsemigroup coincide and it is a zero
semigroup. The class of all n-dinilpotent doppelsemigroups forms a subvariety of the
variety of doppelsemigroups. It is not difficult to check that the variety of n-nilpotent
doppelsemigroups (see Section 2.2) is a subvariety of the variety of n-dinilpotent dop-
pelsemigroups.
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Definition 2.3.4. A doppelsemigroup which is free in the variety of n-dinilpotent dop-
pelsemigroups is called a free n-dinilpotent doppelsemigroup.

The problem is to construct a free n-dinilpotent doppelsemigroup.

As in Section 2.1, let F[X ] be the free semigroup on X , T the free monoid on the two-
element set {a,b} and θ ∈ T the empty word. For x ∈ {a,b} and all u ∈ T , the number
of occurrences of an element x in u is denoted by dx(u). Obviously, dx(θ) = 0. Fix n ∈N
and put

Mn := {(w,u) ∈ F[X ]×T | lw− lu = 1, dx(u)+1 6 n, x ∈ {a,b}}∪{0}.

Define operations a and ` on Mn by

(w1,u1)a (w2,u2) :=

(w1w2,u1au2) if dx(u1au2)+1 6 n, x ∈ {a,b},

0 otherwise,

(w1,u1)` (w2,u2) :=

(w1w2,u1bu2) if dx(u1bu2)+1 6 n, x ∈ {a,b},

0 otherwise

and
(w1,u1)∗0 := 0∗ (w1,u1) := 0∗0 := 0

for all (w1,u1),(w2,u2) ∈Mn \ {0} and ∗ ∈ {a,`}. The obtained algebra is denoted by
FDDSn(X).

Theorem 2.3.5. FDDSn(X) is the free n-dinilpotent doppelsemigroup.

Proof. First prove that FDDSn(X) is a doppelsemigroup. Let (w1,u1), (w2,u2),
(w3,u3) ∈Mn \{0}. For x,y,z ∈ {a,b} it is clear that

dx(u1yu2zu3)+1 6 n

implies
dx(u1yu2)+1 6 n, (2.3)

dx(u2zu3)+1 6 n. (2.4)
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Let dx(u1au2au3)+1 6 n for all x ∈ {a,b}. Then, using (2.3), (2.4), we get

((w1,u1)a (w2,u2))a (w3,u3) = (w1w2,u1au2)a (w3,u3)

= (w1w2w3,u1au2au3) = (w1,u1)a (w2w3,u2au3)

= (w1,u1)a ((w2,u2)a (w3,u3)).

If dx(u1au2au3)+1 > n for some x ∈ {a,b}, then, obviously,

((w1,u1)a (w2,u2))a (w3,u3) = 0 = (w1,u1)a ((w2,u2)a (w3,u3)).

So, the axiom (D3) of a doppelsemigroup holds.

If dx(u1au2bu3)+1 6 n for all x ∈ {a,b}, then, using (2.3), (2.4), obtain

((w1,u1)a (w2,u2))` (w3,u3) = (w1w2,u1au2)` (w3,u3)

= (w1w2w3,u1au2bu3) = (w1,u1)a (w2w3,u2bu3)

= (w1,u1)a ((w2,u2)` (w3,u3)).

Let dx(u1au2bu3)+1 > n for some x ∈ {a,b}. Then, clearly,

((w1,u1)a (w2,u2))` (w3,u3) = 0 = (w1,u1)a ((w2,u2)` (w3,u3)).

Thus, the axiom (D1) of a doppelsemigroup holds. Similarly, one can check the axioms
(D2) and (D4). Thus, FDDSn(X) is a doppelsemigroup.

Take arbitrary elements (wi,ui) ∈Mn \{0}, 1 6 i 6 n+1. It is clear that

da(u1au2a . . .aun+1)+1 > n.

From here
(w1,u1)a (w2,u2)a . . .a (wn+1,un+1) = 0.

At the same time, assuming y0 = θ for y∈ {a,b}, for any (xi,θ)∈Mn\{0}, where xi ∈X ,
1 6 i 6 n, get

(x1,θ)a (x2,θ)a . . .a (xn,θ) = (x1x2 . . .xn,an−1) 6= 0.
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From the last arguments we conclude that (Mn,a) is a nilpotent semigroup of nilpotency
index n. Analogously, we can prove that (Mn,`) is a nilpotent semigroup of nilpotency
index n. So, FDDSn(X) is an n-dinilpotent doppelsemigroup.

Let us show that FDDSn(X) is free in the variety of n-dinilpotent doppelsemigroups.

Obviously, FDDSn(X) is generated by X × {θ}. Let (K,a′,`′) be an arbitrary
n-dinilpotent doppelsemigroup. Let β : X ×{θ} → K be an arbitrary map. Consider
a map α : X → K such that xα = (x,θ)β for all x ∈ X , and define a map

π : FDDSn(X)→ (K,a′,`′)

by

ωπ :=



x1α ỹ1x2α ỹ2 . . . ỹs−1xsα if ω = (x1x2 . . .xs,y1y2 . . .ys−1),

xd ∈ X , 1 6 d 6 s, yp ∈ {a,b},

1 6 p 6 s−1, s > 1,

x1α if ω = (x1,θ), x1 ∈ X ,

0 if ω = 0,

where

ỹp :=

a′ if yp = a,

`′ if yp = b

for all 1 6 p 6 s−1, s > 1. According to Lemma 1.2.7 π is well-defined.

To show that π is a homomorphism we will use the axioms of a doppelsemigroup and
the identities of an n-dinilpotent doppelsemigroup.

If s = 1, we will regard the sequence y1y2 . . .ys−1 ∈ T as θ . For arbitrary elements

(w1,u1) = (x1x2 . . .xs,y1y2 . . .ys−1),

(w2,u2) = (z1z2 . . .zk,c1c2 . . .ck−1) ∈ FDDSn(X),

where xd ,zi ∈ X , 1 6 d 6 s, 1 6 i 6 k, yp,c j ∈ {a,b}, 1 6 p 6 s−1, 1 6 j 6 k−1, in the
case dx(u1au2)+1 6 n for all x ∈ {a,b}, we get

((x1x2 . . .xs,y1y2 . . .ys−1)a (z1z2 . . .zk,c1c2 . . .ck−1))π

= (x1 . . .xsz1 . . .zk,y1 . . .ys−1ac1 . . .ck−1)π
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= x1α ỹ1 . . . ỹs−1xsα ãz1α c̃1 . . . c̃k−1zkα

= (x1α ỹ1 . . . ỹs−1xsα)a′ (z1α c̃1 . . . c̃k−1zkα)

= (x1x2 . . .xs,y1y2 . . .ys−1)π a′ (z1z2 . . .zk,c1c2 . . .ck−1)π.

If dx(u1au2)+1 > n for some x ∈ {a,b}, then

((x1x2 . . .xs,y1y2 . . .ys−1)a (z1z2 . . .zk,c1c2 . . .ck−1))π = 0π = 0.

Since (K,a′,`′) is n-dinilpotent, we have

0 = x1α ỹ1 . . . ỹs−1xsα ãz1α c̃1 . . . c̃k−1zkα

= (x1α ỹ1 . . . ỹs−1xsα)a′ (z1α c̃1 . . . c̃k−1zkα)

= (x1x2 . . .xs,y1y2 . . .ys−1)π a′ (z1z2 . . .zk,c1c2 . . .ck−1)π.

So,
((w1,u1)a (w2,u2))π = (w1,u1)π a′ (w2,u2)π

for all (w1,u1),(w2,u2) ∈ FDDSn(X).

Similarly for `. So, π is a homomorphism. It is clear that (x,θ)π = (x,θ)β for all
(x,θ) ∈ X ×{θ}. Since X ×{θ} generates FDDSn(X), the uniqueness of such homo-
morphism π is obvious. Thus, FDDSn(X) is free in the variety of n-dinilpotent dop-
pelsemigroups.

Exercise 2.3.6. Check the axioms (D2) and (D4) of FDDSn(X).

Exercise 2.3.7. Prove that (Mn,`) is a nilpotent semigroup of nilpotency index n.

Exercise 2.3.8. Consider the map π defined in the proof of Theorem 2.3.5. Show that

((w1,u1)` (w2,u2))π = (w1,u1)π `′ (w2,u2)π

for all (w1,u1),(w2,u2) ∈ FDDSn(X).

Theorem 2.3.5 gives us an idea that one-generated free n-dinilpotent doppelsemigroups
have also other presentation. Construct a doppelsemigroup which is isomorphic to the
free n-dinilpotent doppelsemigroup of rank 1.
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Fix n ∈ N and let

Φn := {u ∈ T | dx(u)+1 6 n, x ∈ {a,b}}∪{0}.

Define operations a and ` on Φn by

u1 au2 :=

u1au2 if dx(u1au2)+1 6 n, x ∈ {a,b},

0 otherwise,

u1 `u2 :=

u1bu2 if dx(u1bu2)+1 6 n, x ∈ {a,b},

0 otherwise

and
u1 ∗0 := 0∗u1 := 0∗0 := 0

for all u1,u2 ∈ Φn \ {0} and ∗ ∈ {a,`}. The obtained algebra is denoted by Φn. Ob-
viously, Φn is a doppelsemigroup.

Exercise 2.3.9. Prove that Φn is a doppelsemigroup.

Lemma 2.3.10. If |X |= 1, then Φn ∼= FDDSn(X).

Exercise 2.3.11. Let X = {r}. Prove that a map γ : Φn→ FDDSn(X), defined by the rule

uγ :=

(rlu+1,u) if u ∈Φn \{0},

0 if u = 0,

is an isomorphism.

The following lemma establishes a relationship between both semigroups of the free
n-dinilpotent doppelsemigroup FDDSn(X).

Lemma 2.3.12. The semigroups (Mn,a) and (Mn,`) are isomorphic.

Proof. Let â = b, b̂ = a and define a map σ : (Mn,a)→ (Mn,`) by putting

tσ :=

(w, ŷ1ŷ2 . . . ŷm) if t = (w,y1y2 . . .ym) ∈Mn \{0}, yp ∈ {a,b}, 1 6 p 6 m,

t otherwise.
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An immediate verification shows that σ is an isomorphism.

Exercise 2.3.13. Show that the map σ defined in the proof of Lemma 2.3.12 is an iso-
morphism.

Since the set X×{θ} is generating for FDDSn(X), we obtain the following description
of the automorphism group of the free n-dinilpotent doppelsemigroup.

Lemma 2.3.14. AutFDDSn(X)∼= ℑ[X ].

Exercise 2.3.15. Prove Lemma 2.3.14.

Definition 2.3.16. If ρ is a congruence on a doppelsemigroup (D,a,`) such that
(D,a,`)/ρ is an n-dinilpotent doppelsemigroup, we say that ρ is an n-dinilpotent con-

gruence.

At the end of this section we present the least n-dinilpotent congruence on a free dop-
pelsemigroup.

Recall that if f : D1→D2 is a homomorphism of doppelsemigroups, the corresponding
congruence on D1 is denoted by ∆ f .

Let FDS(X) be the free doppelsemigroup (see Section 2.1) and n∈N. Define a relation
µ(n) on FDS(X) by

(w1,u1)µ(n)(w2,u2)

if and only if

(w1,u1) = (w2,u2) or

dx(u1)+1 > n for some x ∈ {a,b},

dy(u2)+1 > n for some y ∈ {a,b}.

Theorem 2.3.17. The relation µ(n) is the least n-dinilpotent congruence on the free dop-

pelsemigroup FDS(X).

Proof. Define a map ϕ : FDS(X)→ FDDSn(X) by

(w,u)ϕ :=

(w,u) if dx(u)+1 6 n for all x ∈ {a,b},

0 otherwise

((w,u) ∈ FDS(X)). Show that ϕ is a homomorphism.
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Let (w1,u1),(w2,u2) ∈ FDS(X) and dx(u1au2)+1 6 n for all x ∈ {a,b}. From the last
inequality it follows that dx(u1)+1 6 n and dx(u2)+1 6 n for all x ∈ {a,b}. Then

((w1,u1)a (w2,u2))ϕ = (w1w2,u1au2)ϕ = (w1w2,u1au2)

= (w1,u1)a (w2,u2) = (w1,u1)ϕ a (w2,u2)ϕ.

If dx(u1au2)+1 > n for some x ∈ {a,b}, then

((w1,u1)a (w2,u2))ϕ = (w1w2,u1au2)ϕ = 0 = (w1,u1)ϕ a (w2,u2)ϕ.

Let further dx(u1bu2)+ 1 6 n for all x ∈ {a,b}. Then dx(u1)+ 1 6 n, dx(u2)+ 1 6 n

for all x ∈ {a,b} and

((w1,u1)` (w2,u2))ϕ = (w1w2,u1bu2)ϕ = (w1w2,u1bu2)

= (w1,u1)` (w2,u2) = (w1,u1)ϕ ` (w2,u2)ϕ.

If dx(u1bu2)+1 > n for some x ∈ {a,b}, then

((w1,u1)` (w2,u2))ϕ = (w1w2,u1bu2)ϕ = 0 = (w1,u1)ϕ ` (w2,u2)ϕ.

Thus, ϕ is a surjective homomorphism. By Theorem 2.3.5, FDDSn(X) is the free
n-dinilpotent doppelsemigroup. Then ∆ϕ is the least n-dinilpotent congruence on
FDS(X). From the definition of ϕ it follows that ∆ϕ = µ(n).

• • • • • • • • • • • • • • • • • • • • • • • • •

2.4 Free left n-dinilpotent doppelsemigroups

In this section, we introduce left (right) n-dinilpotent doppelsemigroups which are
analogs of left (right) nilpotent semigroups of rank n considered by Schein. A free ob-
ject in the variety of left (right) n-dinilpotent doppelsemigroups is constructed and stu-
died. Using the constructed free algebras, we also characterize some least congruences
on a free doppelsemigroup.

Consider the notion of a left (right) nilpotent semigroup of rank n.
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Definition 2.4.1 ([33]). A semigroup G is called a left (right) nilpotent semigroup of rank

n if the product of any n elements from this semigroup gives a left (right) zero.

The class of all left nilpotent semigroups of rank n is characterized by the identity

x1x2 . . .xnxn+1 = x1x2 . . .xn.

The identity which characterizes right nilpotent semigroups of rank n is defined dually.
It is well-known (see [33], Lemma 1) that a left (right) nilpotent semigroup of rank n

is also a left (right) nilpotent semigroup of any rank m greater than n. Right nilpotent
semigroups appear in automata theory, namely, such semigroups are semigroups of self-
adaptive automata (see [10, 22]).

For doppelsemigroups the question about introducing an analog of a left (right) nilpo-
tent semigroup of rank n is natural.

Definition 2.4.2. A doppelsemigroup (D,a,`) is called left dinilpotent if for some n ∈N
and any x1, . . . ,xn, x ∈ D the following identities hold:

(x1 ∗1 · · · ∗n−1 xn)a x = x1 ∗1 · · · ∗n−1 xn = (x1 ∗1 · · · ∗n−1 xn)` x, (2.5)

where ∗1, . . . ,∗n−1 ∈ {a,`}. The least such n is called the left dinilpotency index of

(D,a,`). For k ∈ N a left dinilpotent doppelsemigroup of left dinilpotency index 6 k is
called left k-dinilpotent.

Definition 2.4.3. A doppelsemigroup (D,a,`) is called right dinilpotent if for some
n ∈ N and any x1, . . . ,xn, x ∈ D the following identities hold:

xa (x1 ∗1 · · · ∗n−1 xn) = x1 ∗1 · · · ∗n−1 xn = x` (x1 ∗1 · · · ∗n−1 xn),

where ∗1, . . . ,∗n−1 ∈ {a,`}. The least such n is called the right dinilpotency index of

(D,a,`). For k ∈ N a right dinilpotent doppelsemigroup of right dinilpotency index 6 k

is called right k-dinilpotent.

It is clear that operations of any left (right) 1-dinilpotent doppelsemigroup coincide. In
this case, we obtain a left (right) zero semigroup. Moreover, the class of all left (right)
n-dinilpotent doppelsemigroups forms a subvariety of the variety of doppelsemigroups.
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Definition 2.4.4. A doppelsemigroup which is free in the variety of left (right) n-dinilpo-
tent doppelsemigroups is called a free left (right) n-dinilpotent doppelsemigroup.

Further we will solve the problem of constructing a free left (right) n-dinilpotent dop-
pelsemigroup. We use the notations from Section 2.1.

Let w ∈ F[X ]. Fix n ∈ N. If lw ≥ n, by
n−→w
( n←−w

)
denote the initial (terminal) subword

with the length n of w. By definition,
0−→u = θ

( 0←−u = θ

)
for all u ∈ T \ {θ}. Define

operations a and ` on

Ln := {(w,u) ∈ F [X ]×T | lw− lu = 1, lw 6 n}

by

(w1,u1)a (w2,u2) :=


(w1w2,u1au2) if lw1 + lw2 6 n,( n−−−→w1w2,

n−1−−−→u1au2

)
if lw1 + lw2 > n

and

(w1,u1)` (w2,u2) :=


(w1w2,u1bu2) if lw1 + lw2 6 n,( n−−−→w1w2,

n−1−−−→
u1bu2

)
if lw1 + lw2 > n

for all (w1,u1),(w2,u2) ∈ Ln. The obtained algebra is denoted by FDDSl
n(X).

Lemma 2.4.5. The operation a of FDDSl
n(X) is associative.

Proof. Let (w1,u1),(w2,u2),(w3,u3) ∈ FDDSl
n(X) and

lw1 + lw2 + lw3 6 n. (2.6)

Obviously, (2.6) implies

lw1 + lw2 < n, (2.7)

lw2 + lw3 < n. (2.8)

Using (2.6)–(2.8), obtain

((w1,u1)a (w2,u2))a (w3,u3) = (w1w2,u1au2)a (w3,u3)
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= (w1w2w3,u1au2au3) = (w1,u1)a (w2w3,u2au3)

= (w1,u1)a ((w2,u2)a (w3,u3)).

Let further
lw1 + lw2 + lw3 > n. (2.9)

Divide this case into subcases:

lw1 + lw2 6 n, lw2 + lw3 6 n, (2.10)

lw1 + lw2 6 n, lw2 + lw3 > n, (2.11)

lw1 + lw2 > n, lw2 + lw3 6 n, (2.12)

lw1 + lw2 > n, lw2 + lw3 > n. (2.13)

Consider the case (2.11):

((w1,u1)a (w2,u2))a (w3,u3) = (w1w2,u1au2)a (w3,u3)

=
( n−−−−−→w1w2w3,

n−1−−−−−→u1au2au3

)
=

( n−−−−−→
w1

n−−−→w2w3,

n−1−−−−−−→
u1a

n−1−−−→u2au3

)

= (w1,u1)a
( n−−−→w2w3,

n−1−−−→u2au3

)
= (w1,u1)a ((w2,u2)a (w3,u3)).

Let us turn to the case (2.12). We have

((w1,u1)a (w2,u2))a (w3,u3) =
( n−−−→w1w2,

n−1−−−→u1au2

)
a (w3,u3)

=

( n−−−−−→n−−−→w1w2 w3,

n−1−−−−−−→
n−1−−−→u1au2 au3

)
=
( n−−−→w1w2,

n−1−−−→u1au2

)
=
( n−−−−−→w1w2w3,

n−1−−−−−→u1au2au3

)
= (w1,u1)a (w2w3,u2au3

)
= (w1,u1)a ((w2,u2)a (w3,u3)).

The cases (2.10) and (2.13) are considered in a similar way. Thus, the operation a is
associative.

Lemma 2.4.6. The operation ` of FDDSl
n(X) is associative.
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Proof. The proof is similar to the proof of Lemma 2.4.5.

Exercise 2.4.7. Prove Lemma 2.4.6.

Lemma 2.4.8. FDDSl
n(X) satisfies the axiom (D2) of a doppelsemigroup.

Proof. Let (w1,u1),(w2,u2),(w3,u3) ∈ FDDSl
n(X) and (2.6) holds. The condition (2.6)

implies (2.7) and (2.8). Using (2.6)–(2.8), get

((w1,u1)` (w2,u2))a (w3,u3) = (w1w2,u1bu2)a (w3,u3)

= (w1w2w3,u1bu2au3) = (w1,u1)` (w2w3,u2au3)

= (w1,u1)` ((w2,u2)a (w3,u3)).

Let now (2.9) holds. Divide this case into subcases (2.10)–(2.13) (see the proof of
Lemma 2.4.5).

Consider the case (2.11):

((w1,u1)` (w2,u2))a (w3,u3) = (w1w2,u1bu2)a (w3,u3)

=
( n−−−−−→w1w2w3,

n−1−−−−−→
u1bu2au3

)
=

( n−−−−−→
w1

n−−−→w2w3,

n−1−−−−−−→
u1b

n−1−−−→u2au3

)

= (w1,u1)`
( n−−−→w2w3,

n−1−−−→u2au3

)
= (w1,u1)` ((w2,u2)a (w3,u3)).

If we have (2.13), then

((w1,u1)` (w2,u2))a (w3,u3) =
( n−−−→w1w2,

n−1−−−→
u1bu2

)
a (w3,u3)

=

( n−−−−−→n−−−→w1w2 w3,

n−1−−−−−−→
n−1−−−→

u1bu2 au3

)
=
( n−−−→w1w2,

n−1−−−→
u1bu2

)
=
( n−−−−−→w1w2w3,

n−1−−−−−→
u1bu2au3

)

=

( n−−−−−→
w1

n−−−→w2w3,

n−1−−−−−−→
u1b

n−1−−−→u2au3

)
= (w1,u1)`

( n−−−→w2w3,
n−1−−−→u2au3

)
= (w1,u1)` ((w2,u2)a (w3,u3)).
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The cases (2.10) and (2.12) are considered in a similar way. So, FDDSl
n(X) satisfies

the axiom (D2) of a doppelsemigroup.

Lemma 2.4.9. FDDSl
n(X) satisfies the axiom (D1) of a doppelsemigroup.

Proof. The proof is similar to the proof of Lemma 2.4.8.

Exercise 2.4.10. Prove Lemma 2.4.9.

Lemma 2.4.11. FDDSl
n(X) is a left n-dinilpotent doppelsemigroup.

Proof. By Lemmas 2.4.5, 2.4.6, 2.4.8 and 2.4.9, FDDSl
n(X) is a doppelsemigroup. Show

that it is left n-dinilpotent.

Let (w1,u1), . . . ,(wn,un) ∈ FDDSl
n(X) and ∗1, . . . ,∗n−1 ∈ {a,`}. Then the expression

(t,u) := (w1,u1)∗1 · · · ∗n−1 (wn,un) ∈ FDDSl
n(X).

It is clear that lt = n. Then

(t,u)a (w,g) =
( n−→tw,

n−1−→uag
)
= (t,u)

and

(t,u)` (w,g) =
( n−→tw,

n−1−→
ubg
)
= (t,u)

for any (w,g) ∈ FDDSl
n(X). So, FDDSl

n(X) is a left dinilpotent doppelsemigroup. From
the last calculations it follows that left dinilpotency index of FDDSl

n(X) is ≤ n.

Lemma 2.4.12. FDDSl
n(X) is free in the variety of left n-dinilpotent doppelsemigroups.

Proof. Let (S,a′,`′) be an arbitrary left n-dinilpotent doppelsemigroup and α : X → S

an arbitrary map. Take (x1 . . .xs,y1 . . .ys−1) ∈ FDDSl
n(X), where xi ∈ X , 1 6 i 6 s,

y j ∈ {a,b}, 1 6 j 6 s− 1. If s = 1, we will regard the sequence y1 . . .ys−1 ∈ T as θ .
For y ∈ {a,b} let

ỹ :=

a′ if y = a,

`′ if y = b.
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Define a map ψ : FDDSl
n(X)→ (S,a′,`′) by the rule

ωψ :=

x1α ỹ1x2α ỹ2 . . . ỹs−1xsα if ω = (x1x2 . . .xs,y1y2 . . .ys−1), s > 1,

x1α if ω = (x1,θ).

By Lemma 1.2.7, ψ is well-defined. Show that ψ is a homomorphism. We will use
Lemma 1.2.7 and (2.5).

For arbitrary elements

(x1 . . .xs,y1 . . .ys−1),(z1 . . .zk,c1 . . .ck−1) ∈ FDDSl
n(X),

where zd ∈ X , 1 6 d 6 k, cq ∈ {a,b}, 1 6 q 6 k−1, consider two cases:

s+ k 6 n, (2.14)

s+ k > n. (2.15)

In the case (2.14) obtain

((x1 . . .xs,y1 . . .ys−1)a (z1 . . .zk,c1 . . .ck−1))ψ

= (x1 . . .xsz1 . . .zk,y1 . . .ys−1ac1 . . .ck−1)ψ

= x1α ỹ1 . . . ỹs−1xsα ãz1α c̃1 . . . c̃k−1zkα

= (x1α ỹ1 . . . ỹs−1xsα)a′ (z1α c̃1 . . . c̃k−1zkα)

= (x1 . . .xs,y1 . . .ys−1)ψ a′ (z1 . . .zk,c1 . . .ck−1)ψ.

If (2.15) holds, then assume s+ f = n for some f ∈N0 and consider the following three
cases:

f = 0, (2.16)

f = 1, (2.17)

f > 1. (2.18)

In the case (2.16), we have

((x1 . . .xs,y1 . . .ys−1)a (z1 . . .zk,c1 . . .ck−1))ψ
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=
( n−−−−−−−−−→x1 . . .xsz1 . . .zk,

n−1−−−−−−−−−−−−−−→y1 . . .ys−1ac1 . . .ck−1

)
ψ

= (x1 . . .xs,y1 . . .ys−1)ψ = x1α ỹ1 . . . ỹs−1xsα

= (x1α ỹ1 . . . ỹs−1xsα)a′ (z1α c̃1 . . . c̃k−1zkα)

= (x1 . . .xs,y1 . . .ys−1)ψ a′ (z1 . . .zk,c1 . . .ck−1)ψ.

Suppose that the condition (2.17) is satisfied. Then

((x1 . . .xs,y1 . . .ys−1)a (z1 . . .zk,c1 . . .ck−1))ψ

=
( n−−−−−−−−−→x1 . . .xsz1 . . .zk,

n−1−−−−−−−−−−−−−−→y1 . . .ys−1ac1 . . .ck−1

)
ψ

= (x1 . . .xsz1,y1 . . .ys−1a)ψ = x1α ỹ1 . . . ỹs−1xsα ãz1α

= (x1α ỹ1 . . . ỹs−1xsα ãz1α)c̃1(z2α c̃2 . . . c̃k−1zkα)

= (x1α ỹ1 . . . ỹs−1xsα)ã(z1α c̃1 . . . c̃k−1zkα)

= (x1α ỹ1 . . . ỹs−1xsα)a′ (z1α c̃1 . . . c̃k−1zkα)

= (x1 . . .xs,y1 . . .ys−1)ψ a′ (z1 . . .zk,c1 . . .ck−1)ψ.

Finally, in the case (2.18), we get

((x1 . . .xs,y1 . . .ys−1)a (z1 . . .zk,c1 . . .ck−1))ψ

=
( n−−−−−−−−−→x1 . . .xsz1 . . .zk,

n−1−−−−−−−−−−−−−−→y1 . . .ys−1ac1 . . .ck−1

)
ψ

= (x1 . . .xsz1 . . .z f ,y1 . . .ys−1ac1 . . .c f−1)ψ

= x1α ỹ1 . . . ỹs−1xsα ãz1α c̃1 . . . c̃ f−1z f α

= (x1α ỹ1 . . . ỹs−1xsα ãz1α c̃1 . . . c̃ f−1z f α)c̃ f (z f+1α c̃ f+1 . . . c̃k−1zkα)

= (x1α ỹ1 . . . ỹs−1xsα)ã(z1α c̃1 . . . c̃k−1zkα)

= (x1α ỹ1 . . . ỹs−1xsα)a′ (z1α c̃1 . . . c̃k−1zkα)

= (x1 . . .xs,y1 . . .ys−1)ψ a′ (z1 . . .zk,c1 . . .ck−1)ψ.

Similarly for `. So, ψ is a homomorphism.

Thus, FDDSl
n(X) is free in the variety of left n-dinilpotent doppelsemigroups.
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Exercise 2.4.13. Consider the map ψ defined in the proof of Lemma 2.4.12. Show that

((x1 . . .xs,y1 . . .ys−1)` (z1 . . .zk,c1 . . .ck−1))ψ

= (x1 . . .xs,y1 . . .ys−1)ψ `′ (z1 . . .zk,c1 . . .ck−1)ψ

for all (x1 . . .xs,y1 . . .ys−1),(z1 . . .zk,c1 . . .ck−1) ∈ FDDSl
n(X).

The main result of this section is the following.

Theorem 2.4.14. FDDSl
n(X) is the free left n-dinilpotent doppelsemigroup.

Proof. The proof follows from Lemmas 2.4.5, 2.4.6, 2.4.8, 2.4.9, 2.4.11 and 2.4.12.

The following statement establishes a relationship between both semigroups of the free
left n-dinilpotent doppelsemigroup.

Lemma 2.4.15. The semigroups (Ln,a) and (Ln,`) of the free left n-dinilpotent dop-

pelsemigroup FDDSl
n(X) are isomorphic.

Proof. Let â = b, b̂ = a and define a map φ : (Ln,a)→ (Ln,`) by putting

ωφ :=

(w, ĉ1ĉ2 . . . ĉk) if ω = (w,c1c2 . . .ck) ∈ Ln, cq ∈ {a,b}, 1 6 q 6 k,

ω if ω = (w,θ), w ∈ X .

An immediate verification shows that φ is an isomorphism.

Exercise 2.4.16. Show that the map φ defined in the proof of Lemma 2.4.15 is an iso-
morphism.

In the case of rank 1 we have a different construction for the free left n-dinilpotent
doppelsemigroup.

Fix n ∈ N and define operations a and ` on Ωn := {u ∈ T | lu +1 6 n} by

u1 au2 :=

u1au2 if lu1u2 +2 6 n,
n−1−−−→u1au2 if lu1u2 +2 > n

and

u1 `u2 :=


u1bu2 if lu1u2 +2 6 n,

n−1−−−→
u1bu2 if lu1u2 +2 > n
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for all u1,u2 ∈ Ωn. The algebra (Ωn,a,`) is denoted by Ωn. Obviously, Ωn is a dop-
pelsemigroup.

Exercise 2.4.17. Prove that Ωn is a doppelsemigroup.

Lemma 2.4.18. If |X |= 1, then a map γ : Ωn→ FDDSl
n(X), defined by uγ := (rlu+1,u),

is an isomorphism.

Exercise 2.4.19. Prove that Ωn ∼= FDDSl
n(X) if |X |= 1.

The free left n-dinilpotent doppelsemigroup FDDSl
n(X) is determined uniquely up to

isomorphism by cardinality of the set X because the generating set of FDDSl
n(X) has

the same cardinality as X . Hence, obtain the following description of the automorphism
group of the free left n-dinilpotent doppelsemigroup.

Lemma 2.4.20. AutFDDSl
n(X)∼= ℑ[X ].

Exercise 2.4.21. Prove Lemma 2.4.20.

Definition 2.4.22. If ρ is a congruence on a doppelsemigroup (D,a,`) such that
(D,a,`)/ρ is a left (right) n-dinilpotent doppelsemigroup, we say that ρ is a left (right)

n-dinilpotent congruence.

At the end of this section we characterize the least left n-dinilpotent congruence on
a free doppelsemigroup.

As above, if f : D1→D2 is a homomorphism of doppelsemigroups, the corresponding
congruence on D1 is denoted by ∆ f .

Theorem 2.4.23. A map π : FDS(X)→ FDDSl
n(X), defined by

(w,u) 7→ (w,u)π :=


(w,u) if lw 6 n,( n−→w ,

n−1−→u
)

if lw > n,

is an epimorphism and ∆π is the least left n-dinilpotent congruence on FDS(X).

Proof. Let (w1,u1),(w2,u2) ∈ FDS(X). Assume lw1 + lw2 6 n. Then lw1 < n, lw2 < n and

((w1,u1)a (w2,u2))π = (w1w2,u1au2)π = (w1w2,u1au2)

= (w1,u1)a (w2,u2) = (w1,u1)π a (w2,u2)π.
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Let lw1 + lw2 > n. Divide this case into such subcases:

lw1 6 n, lw2 6 n, (2.19)

lw1 6 n, lw2 > n, (2.20)

lw1 > n, lw2 6 n, (2.21)

lw1 > n, lw2 > n. (2.22)

Consider the case (2.19):

((w1,u1)a (w2,u2))π = (w1w2,u1au2)π =
( n−−−→w1w2,

n−1−−−→u1au2

)
= (w1,u1)a (w2,u2) = (w1,u1)π a (w2,u2)π.

If the case (2.20) holds, then

((w1,u1)a (w2,u2))π = (w1w2,u1au2)π =
( n−−−→w1w2,

n−1−−−→u1au2

)

=

( n−−−→
w1

n−→w2,

n−1−−−−→
u1a

n−1−→u2

)
= (w1,u1)a

( n−→w2,
n−1−→u2

)
= (w1,u1)π a (w2,u2)π.

In the case (2.21), we get

((w1,u1)a (w2,u2))π = (w1w2,u1au2)π =
( n−−−→w1w2,

n−1−−−→u1au2

)
=
( n−→w1,

n−1−→u1

)

=

( n−−−→n−→w1 w2,

n−1−−−−→
n−1−→u1 au2

)
=
( n−→w1,

n−1−→u1

)
a (w2,u2) = (w1,u1)π a (w2,u2)π.

Finally, if (2.22) is true, then

((w1,u1)a (w2,u2))π = (w1w2,u1au2)π =
( n−−−→w1w2,

n−1−−−→u1au2

)
=
( n−→w1,

n−1−→u1

)

=
( n−−−→n−→w1

n−→w2,

n−1−−−−−→
n−1−→u1 a

n−1−→u2

)
=
( n−→w1,

n−1−→u1

)
a
( n−→w2,

n−1−→u2

)
= (w1,u1)π a (w2,u2)π.
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Thus,
((w1,u1)a (w2,u2))π = (w1,u1)π a (w2,u2)π

for all (w1,u1),(w2,u2) ∈ FDS(X).

Similarly for `. So, π is a homomorphism. Evidently, π is a surjection. Since by
Theorem 2.4.14, FDDSl

n(X) is the free left n-dinilpotent doppelsemigroup, ∆π is the least
left n-dinilpotent congruence on FDS(X).

Exercise 2.4.24. Consider the map π defined in the proof of Theorem 2.4.23. Show that

((w1,u1)` (w2,u2))π = (w1,u1)π ` (w2,u2)π

for all (w1,u1),(w2,u2) ∈ FDS(X).

In order to construct free right n-dinilpotent doppelsemigroups, characterize the least
right n-dinilpotent congruence on the free doppelsemigroup and the automorphism group
of the free right n-dinilpotent doppelsemigroup we use the duality principle.

Note that doppelsemigroups have a relation with restrictive bisemigroups. Recall the
definition of a restrictive bisemigroup [34, 35].

Definition 2.4.25. Let B an arbitrary nonempty set and a, ` binary operations on B. An
ordered triple (B,a,`) is called a restrictive bisemigroup if the axioms (D1), (D4), (D5)
and

xa ya z = ya xa z, x` y` z = x` z` y,

xa x = x = x` x

hold for all x,y,z ∈ B.

Restrictive bisemigroups have applications in the theory of binary relations.
It is known that operations of a doppelsemigroup (D,a,`) with a rectangular band

(D,a) or (D,`) coincide (see Exercise 2.2.23) and operations of a commutative
doppelsemigroup (D,a,`) with idempotent operations a and ` coincide too (see
Lemma 2.2.24). Obviously, operations of a doppelsemigroup (D,a,`) with a left (right)
zero semigroup (D,a) or (D,`) coincide. At the same time, there exist restrictive bisemi-
groups [34] whose binary idempotent operations a and ` are distinct.

Now we formulate one open problem.
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Open Problem 2.4.26. A doppelsemigroup is called idempotent if both its operations are
idempotent. A doppelsemigroup which is free in the variety of idempotent doppelsemi-
groups is called a free idempotent doppelsemigroup.

Construct a free idempotent doppelsemigroup.

At the end of the chapter we give more information about doppelalgebras and their
relationships with doppelsemigroups.

Richter [32] considered so-called doppelalgebras, that is, vector spaces over a field
equipped with two binary linear associative operations a and ` satisfying the axioms
(D1) and (D2), and gave a condition for such algebras to be Lie algebras. In particu-
lar, in [32] it was shown that the universal enveloping algebra for Lie algebras has the
structure of a doppelalgebra and that there exists a functor from the category of doppelal-
gebras to the category of associative algebras. Doppelalgebras appear in [1] as algebras
over some operads. If in the definition of a doppelalgebra instead of a vector space over
a field we take a set and omit the linearity of operations, we obtain the notion of a dop-
pelsemigroup. The term “doppelsemigroup” was first proposed in [48]. From the last
definition it follows that a doppelalgebra is just a linear analog of a doppelsemigroup
and, therefore, all results obtained for doppelsemigroups can be applied to doppelalgeb-
ras. Moreover, a semigroup (D,`) is an interassociate of a semigroup (D,a) if and only
if (D,a,`) is a doppelsemigroup. So, the problem of the description of interassociates of
a semigroup is reduced to the description of doppelsemigroups. These facts provide one
of the main motivations for the study of doppelsemigroups. A principal way in which one
can obtain interassociative semigroups is, firstly, to describe relatively free doppelsemi-
groups and, secondly, congruences on them. This is demonstrated very successfully in
this chapter (see also [48, 46, 44]), where the author constructed the free doppelsemi-
group, the free commutative doppelsemigroup, the free n-nilpotent doppelsemigroup, the
free n-dinilpotent doppelsemigroup and the free left (right) n-dinilpotent doppelsemi-
group.





Chapter 3

Structure of free strong
doppelsemigroups

In this chapter, we present a free object in the variety of strong doppelsemigroups. We
also construct and study some relatively free strong doppelsemigroups, and characterize
the least congruences on a free strong doppelsemigroup.

3.1 Free strong doppelsemigroups

Strong interassociativity for semigroups was introduced by Gould and Richardson [14]:
Two semigroups defined on the same set are strongly interassociative if the axioms
(D1)–(D3) relating operations of these semigroups are satisfied. This section deals with
strong doppelsemigroups which are sets with two binary associative operations satisfying
axioms of strong interassociativity. So, a semigroup (D,`) is a strong interassociate of
a semigroup (D,a) if and only if (D,a,`) is a strong doppelsemigroup, and the problem
of the description of strong interassociates of a semigroup is reduced to the description of
strong doppelsemigroups. This fact motivates to study strong doppelsemigroups. Com-
mutative dimonoids in the sense of Loday are examples of strong doppelsemigroups and
two strongly interassociative semigroups give rise to a strong doppelsemigroup.

In this section, we describe a free strong doppelsemigroup of an arbitrary rank and for
this doppelsemigroup we construct an isomorphic one. We also consider separately free
strong doppelsemigroups of rank 1.

51
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Recall that a doppelsemigroup (D,a,`) is called strong if it satisfies the axiom

xa (y` z) = x` (ya z). (D3)

In the following, we will use definitions from Sections 2.2 and 2.3.

The class of all n-dinilpotent (respectively, commutative, n-nilpotent) strong dop-
pelsemigroups forms a subvariety of the variety of strong doppelsemigroups. It is not
difficult to see that the variety of n-nilpotent strong doppelsemigroups is a subvariety of
the variety of n-dinilpotent strong doppelsemigroups.

Definition 3.1.1. A strong doppelsemigroup which is free in the variety of strong dop-
pelsemigroups (respectively, n-dinilpotent strong doppelsemigroups, commutative strong
doppelsemigroups, n-nilpotent strong doppelsemigroups) is called a free strong dop-

pelsemigroup (respectively, free n-dinilpotent strong doppelsemigroup, free commutative

strong doppelsemigroup, free n-nilpotent strong doppelsemigroup).

The main problem of this section is to construct a free strong doppelsemigroup.

Let X be an arbitrary nonempty set, n ∈ N. We denote the union of n different copies
of Xn by Yn and assume D(X) :=

⋃
n≥1 Yn. Denoting by x1 . . . x̆i . . .xn an element in the

i-th component of Yn, define operations a and ` on D(X) by

(x1 . . . x̆i . . .xk)a (xk+1 . . . x̆ j . . .xl) := x1 . . . x̆i+ j−k . . .xl ,

(x1 . . . x̆i . . .xk)` (xk+1 . . . x̆ j . . .xl) := x1 . . . x̆i+ j−k−1 . . .xl

for all x1 . . . x̆i . . .xk, xk+1 . . . x̆ j . . .xl ∈ D(X). The algebra (D(X),a,`) is denoted
by FSD(X).

Theorem 3.1.2. FSD(X) is the free strong doppelsemigroup.

Proof. For all x1 . . . x̆i . . .xk, xk+1 . . . x̆ j . . .xl , xl+1 . . . x̆s . . .xm ∈ FSD(X), we have

((x1 . . . x̆i . . .xk)a (xk+1 . . . x̆ j . . .xl))a (xl+1 . . . x̆s . . .xm)

= (x1 . . . x̆i+ j−k . . .xl)a (xl+1 . . . x̆s . . .xm)

= x1 . . . x̆i+ j−k+s−l . . .xm = (x1 . . . x̆i . . .xk)a (xk+1 . . . x̆ j+s−l . . .xm)

= (x1 . . . x̆i . . .xk)a ((xk+1 . . . x̆ j . . .xl)a (xl+1 . . . x̆s . . .xm)),
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((x1 . . . x̆i . . .xk)` (xk+1 . . . x̆ j . . .xl))` (xl+1 . . . x̆s . . .xm)

= (x1 . . . x̆i+ j−k−1 . . .xl)` (xl+1 . . . x̆s . . .xm)

= x1 . . . x̆i+ j−k+s−l−2 . . .xm = (x1 . . . x̆i . . .xk)` (xk+1 . . . x̆ j+s−l−1 . . .xm)

= (x1 . . . x̆i . . .xk)` ((xk+1 . . . x̆ j . . .xl)` (xl+1 . . . x̆s . . .xm)),

((x1 . . . x̆i . . .xk)a (xk+1 . . . x̆ j . . .xl))` (xl+1 . . . x̆s . . .xm)

= (x1 . . . x̆i+ j−k . . .xl)` (xl+1 . . . x̆s . . .xm)

= x1 . . . x̆i+ j−k+s−l−1 . . .xm = (x1 . . . x̆i . . .xk)a (xk+1 . . . x̆ j+s−l−1 . . .xm)

= (x1 . . . x̆i . . .xk)a ((xk+1 . . . x̆ j . . .xl)` (xl+1 . . . x̆s . . .xm))

and

((x1 . . . x̆i . . .xk)` (xk+1 . . . x̆ j . . .xl))a (xl+1 . . . x̆s . . .xm)

= (x1 . . . x̆i+ j−k−1 . . .xl)a (xl+1 . . . x̆s . . .xm)

= x1 . . . x̆i+ j−k+s−l−1 . . .xm = (x1 . . . x̆i . . .xk)` (xk+1 . . . x̆ j+s−l . . .xm)

= (x1 . . . x̆i . . .xk)` ((xk+1 . . . x̆ j . . .xl)a (xl+1 . . . x̆s . . .xm)).

Thus, FSD(X) is a strong doppelsemigroup.

Let us show that FSD(X) is free in the variety of strong doppelsemigroups.

First note that FSD(X) is generated by X̆ = {x̆ |x ∈ X}. Indeed, every element
x1 . . . x̆i . . .xk ∈ FSD(X) has the following representation:

x1 . . . x̆i . . .xk = x̆1 a . . .a x̆i ` . . .` x̆k.

According to Lemma 1.2.9 such representation is unique up to order of symbols
a, . . . ,a︸ ︷︷ ︸

i−1

,`, . . . ,`︸ ︷︷ ︸
k−i

. Thus, 〈X̆〉= FSD(X).

Let (S,a′,`′) be an arbitrary strong doppelsemigroup and γ ′ : X̆ → S an arbitrary map.
Consider a map γ : X → S such that xγ = x̆γ ′ for all x ∈ X , and define a map

φ : FSD(X)→ (S,a′,`′)

by
(x1 . . . x̆i . . .xk)φ := x1γ a′ . . .a′ xiγ `′ . . .`′ xkγ
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for all x1 . . . x̆i . . .xk ∈ FSD(X). According to Lemmas 1.2.7 and 1.2.9 φ is well-defined.

To show that φ is a homomorphism we will use Lemmas 1.2.7 and 1.2.11. For arbitrary
elements x1 . . . x̆i . . .xk, xk+1 . . . x̆ j . . .xl ∈ FSD(X) we get

((x1 . . . x̆i . . .xk)a (xk+1 . . . x̆ j . . .xl))φ

= (x1 . . . x̆i+ j−k . . .xl)φ = x1γ a′ . . .a′ xi+ j−kγ `′ . . .`′ xlγ

= x1γ a′ . . .a′ (xiγ a′ . . .a′ xi+ j−kγ `′ . . .`′ x jγ)`′ . . .`′ xlγ

= x1γ a′ . . .a′ (xiγ `′ . . .`′ xkγ a′ xk+1γ a′ . . .a′ x jγ)`′ . . .`′ xlγ

= (x1γ a′ . . .a′ xiγ `′ . . .`′ xkγ)a′ (xk+1γ a′ . . .a′ x jγ `′ . . .`′ xlγ)

= (x1 . . . x̆i . . .xk)φ a′ (xk+1 . . . x̆ j . . .xl)φ

and

((x1 . . . x̆i . . .xk)` (xk+1 . . . x̆ j . . .xl))φ

= (x1 . . . x̆i+ j−k−1 . . .xl)φ = x1γ a′ . . .a′ xi+ j−k−1γ `′ . . .` xlγ

= x1γ a′ . . .a′ (xiγ a′ . . .a′ xi+ j−k−1γ `′ · · · `′ x jγ)`′ . . .`′ xlγ

= x1γ a′ . . .a′ (xiγ `′ . . .`′ xkγ `′ xk+1γ a′ · · · a′ x jγ)`′ . . .` xlγ

= (x1γ a′ . . .a′ xiγ `′ . . .`′ xkγ)`′ (xk+1γ a′ . . .a′ x jγ `′ . . .` xlγ)

= (x1 . . . x̆i . . .xk)φ `′ (xk+1 . . . x̆ j . . .xl)φ .

So, φ is a homomorphism. Clearly, x̆φ = x̆γ ′ for all x̆ ∈ X̆ . Since X̆ generates FSD(X),
the uniqueness of such homomorphism φ is obvious. Thus, FSD(X) is the free strong
doppelsemigroup.

The question of the description of a more elegant version for the free strong dop-
pelsemigroup is natural. Now we construct a strong doppelsemigroup which is isomor-
phic to the free strong doppelsemigroup FSD(X).

We denote N with zero by N0. Let F[X ] be the free semigroup in the alphabet X . Define
operations a and ` on

C := {(w,m) ∈ F[X ]×N0 | lw > m}
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by

(w1,m1)a (w2,m2) := (w1w2,m1 +m2 +1), (3.1)

(w1,m1)` (w2,m2) := (w1w2,m1 +m2) (3.2)

for all (w1,m1), (w2,m2) ∈C. The algebra (C,a,`) is denoted by F̃[X ].

Lemma 3.1.3. F̃[X ] is a strong doppelsemigroup generated by X×{0}.

Proof. A direct verification shows that F̃[X ] is a strong doppelsemigroup. It is clear from
the definition of F̃[X ] that it is generated by X×{0}.

Exercise 3.1.4. Prove Lemma 3.1.3.

Lemma 3.1.5. FSD(X) and F̃[X ] are isomorphic.

Proof. Define a map µ : FSD(X)→ F̃[X ] by

(x1 . . . x̆i . . .xk)µ := (x1 . . .xi . . .xk, i−1), where x1 . . . x̆i . . .xk ∈ FSD(X).

It is clear that µ is a bijection. Show that µ is a homomorphism.

For arbitrary elements x1 . . . x̆i . . .xk, xk+1 . . . x̆ j . . .xl ∈ FSD(X) obtain

((x1 . . . x̆i . . .xk)a (xk+1 . . . x̆ j . . .xl))µ

= (x1 . . . x̆i+ j−k . . .xl)µ = (x1 . . .xi+ j−k . . .xl , i+ j− k−1)

= (x1 . . .xi . . .xkxk+1 . . .x j . . .xl , i−1+ j− k)

= (x1 . . .xi . . .xk, i−1)a (xk+1 . . .x j . . .xl , j− k−1)

= (x1 . . . x̆i . . .xk)µ a (xk+1 . . . x̆ j . . .xl)µ

and

((x1 . . . x̆i . . .xk)` (xk+1 . . . x̆ j . . .xl))µ

= (x1 . . . x̆i+ j−k−1 . . .xl)µ = (x1 . . .xi+ j−k−1 . . .xl , i+ j− k−2)

= (x1 . . .xi . . .xkxk+1 . . .x j . . .xl , i−1+ j− k−1)

= (x1 . . .xi . . .xk, i−1)` (xk+1 . . .x j . . .xl , j− k−1)

= (x1 . . . x̆i . . .xk)µ ` (xk+1 . . . x̆ j . . .xl)µ.
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Thus, µ is an isomorphism.

The following natural problem is to present a more elegant version for one-generated
free strong doppelsemigroups. Now we construct a strong doppelsemigroup which is
isomorphic to the free strong doppelsemigroup of rank 1.

Define operations a and ` on R := {(n,m) ∈ N×N0 | n > m} by

(n1,m1)a (n2,m2) := (n1 +n2,m1 +m2 +1),

(n1,m1)` (n2,m2) := (n1 +n2,m1 +m2)

for all (n1,m1), (n2,m2) ∈ R. The algebra (R,a,`) is denoted by R. It is not difficult to
check that R is a strong doppelsemigroup.

Exercise 3.1.6. Prove that R is a strong doppelsemigroup.

Lemma 3.1.7. If |X |= 1, then R∼= F̃[X ].

Proof. Let X = {r}. One can show that a map ϖ : R→ F̃[X ], defined by

(n,m)ϖ := (rn,m),

is an isomorphism.

Exercise 3.1.8. Prove that the map ϖ defined in the proof of Lemma 3.1.7 is an isomor-
phism.

A principal importance of free strong doppelsemigroups is the fact that we may obtain
new pairs of strongly interassociative semigroups via constructing congruences on free
strong doppelsemigroups.

• • • • • • • • • • • • • • • • • • • • • • • • • • •

3.2 Free n-dinilpotent strong doppelsemigroups

As we have noted, the class of all n-dinilpotent strong doppelsemigroups forms a variety.
It is natural to construct a free object in this variety. In this section, we consider a free
n-dinilpotent strong doppelsemigroup of an arbitrary rank and discuss separately free
n-dinilpotent strong doppelsemigroups of rank 1.
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As in Section 2.1, let F[X ] be the free semigroup on X . Fix n ∈ N and assume

Dn := {(w,m) ∈ F[X ]×N0 | lw > m, m+1 6 n, lw−m 6 n}∪{0}.

Define operations a and ` on Dn by

(w1,m1)a (w2,m2) :=


(w1w2,m1 +m2 +1) if m1 +m2 +2 6 n,

lw1w2 −m1−m2−1 6 n,

0 otherwise,

(w1,m1)` (w2,m2) :=


(w1w2,m1 +m2) if m1 +m2 +1 6 n,

lw1w2 −m1−m2 6 n,

0 otherwise

and
(w1,m1)∗0 := 0∗ (w1,m1) := 0∗0 := 0

for all (w1,m1),(w2,m2) ∈ Dn \{0} and ∗ ∈ {a,`}. The algebra obtained in this way is
denoted by FDSDn(X).

Theorem 3.2.1. FDSDn(X) is the free n-dinilpotent strong doppelsemigroup.

Proof. First prove that FDSDn(X) is a strong doppelsemigroup. Let

(w1,m1),(w2,m2),(w3,m3) ∈ Dn \{0}

and let
m1 +m2 +m3 +3 6 n and lw1w2w3 −m1−m2−m3−2 6 n. (3.3)

From (3.3) it follows

m1 +m2 +2 < n, m2 +m3 +2 < n, lw2w3 −m2−m3−1 6 n (3.4)

and
lw1w2 −m1−m2−1 6 n. (3.5)
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Using (3.3)–(3.5), we get

((w1,m1)a (w2,m2))a (w3,m3)

= (w1w2,m1 +m2 +1)a (w3,m3) = (w1w2w3,m1 +m2 +m3 +2)

= (w1,m1)a (w2w3,m2 +m3 +1) = (w1,m1)a ((w2,m2)a (w3,m3)).

If m1 +m2 +m3 +3 > n or lw1w2w3 −m1−m2−m3−2 > n, then

((w1,m1)a (w2,m2))a (w3,m3) = 0 = (w1,m1)a ((w2,m2)a (w3,m3)).

So, the axiom (D4) of a strong doppelsemigroup holds.

Let
m1 +m2 +m3 +1 6 n and lw1w2w3 −m1−m2−m3 6 n. (3.6)

From (3.6) it follows
m1 +m2 +1 6 n (3.7)

and

m2 +m3 +1 6 n, lw1w2 −m1−m2 < n, lw2w3 −m2−m3 < n. (3.8)

Using (3.6)–(3.8), we obtain

((w1,m1)` (w2,m2))` (w3,m3)

= (w1w2,m1 +m2)` (w3,m3) = (w1w2w3,m1 +m2 +m3)

= (w1,m1)` (w2w3,m2 +m3) = (w1,m1)` ((w2,m2)` (w3,m3)).

If m1 +m2 +m3 +1 > n or lw1w2w3 −m1−m2−m3 > n, then

((w1,m1)` (w2,m2))` (w3,m3) = 0 = (w1,m1)` ((w2,m2)` (w3,m3)).

Thus, the axiom (D5) of a strong doppelsemigroup holds.

Let
m1 +m2 +m3 +2 6 n and lw1w2w3 −m1−m2−m3−1 6 n. (3.9)
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From (3.9) it follows
m1 +m2 +2 6 n, (3.10)

m2 +m3 +1 < n, lw2w3 −m2−m3 6 n, (3.11)

lw1w2 −m1−m2 6 n. (3.12)

According to (3.9)–(3.12) we get

((w1,m1)a (w2,m2))` (w3,m3)

= (w1w2,m1 +m2 +1)` (w3,m3) = (w1w2w3,m1 +m2 +m3 +1)

= (w1,m1)a (w2w3,m2 +m3) = (w1,m1)a ((w2,m2)` (w3,m3))

and

((w1,m1)` (w2,m2))a (w3,m3)

= (w1w2,m1 +m2)a (w3,m3) = (w1w2w3,m1 +m2 +m3 +1)

= (w1,m1)` (w2w3,m2 +m3 +1) = (w1,m1)` ((w2,m2)a (w3,m3)).

If m1 +m2 +m3 +2 > n or lw1w2w3 −m1−m2−m3−1 > n, then

((w1,m1)a (w2,m2))` (w3,m3) = (w1,m1)a ((w2,m2)` (w3,m3))

= ((w1,m1)` (w2,m2))a (w3,m3) = (w1,m1)` ((w2,m2)a (w3,m3)) = 0.

Consequently, the axioms (D1), (D2) and (D3) of a strong doppelsemigroup are satis-
fied.

The proofs of the remaining cases are obvious. Thus, FDSDn(X) is a strong dop-
pelsemigroup.

Take arbitrary elements (wi,mi) ∈ Dn \{0} with 1 6 i 6 n+1. It is clear that

m1 +m2 + · · ·+mn+1 +n+1 > n.

From here
(w1,m1)a (w2,m2)a . . .a (wn+1,mn+1) = 0.
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At the same time, for any (xi,0) ∈ Dn \{0}, where xi ∈ X with 1 6 i 6 n, get

(x1,0)a (x2,0)a . . .a (xn,0) = (x1x2 . . .xn,n−1) 6= 0.

From the last arguments we conclude that (Dn,a) is a nilpotent semigroup of nilpotency
index n.

Further note that

lw1w2...wn+1 −m1−m2−·· ·−mn+1

= (lw1 −m1)+(lw2 −m2)+ · · ·+(lwn+1 −mn+1)> n

as lwi −mi ≥ 1 for all 1 6 i 6 n+1. From the above it follows that

(w1,m1)` (w2,m2)` . . .` (wn+1,mn+1) = 0.

Moreover,
(x1,0)` (x2,0)` . . .` (xn,0) = (x1x2 . . .xn,0) 6= 0

for any (xi,0) ∈ Dn \{0}, where xi ∈ X with 1 6 i 6 n. Thus, (Dn,`) is a nilpotent semi-
group of nilpotency index n. So, FDSDn(X) is an n-dinilpotent strong doppelsemigroup.

Let us show that FDSDn(X) is free in the variety of n-dinilpotent strong doppelsemi-
groups.

Obviously, FDSDn(X) is generated by X × {0}. Let (K,a′,`′) be an arbitrary
n-dinilpotent strong doppelsemigroup. Let β ′ : X ×{0} → K be an arbitrary map. Con-
sider a map β : X → K such that xβ = (x,0)β ′ for all x ∈ X , and define a map

π : FDSDn(X)→ (K,a′,`′)

by

ωπ :=



x1β a′ . . .a′ xi+1β `′ . . .`′ xkβ if ω = (x1 . . .xk, i),

xp ∈ X , 1 6 p 6 k, k > 1,

x1β if ω = (x1,0), x1 ∈ X ,

0 if ω = 0.

According to Lemmas 1.2.7 and 1.2.9 π is well-defined.
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To show that π is a homomorphism we will use the axioms of an n-dinilpotent strong
doppelsemigroup and Lemmas 1.2.7, 1.2.11.

Let (x1 . . .xk, i),(xk+1 . . .xl , j) ∈ FDSDn(X), where xp ∈ X for 1 6 p 6 l. Assume

i+ j+2 6 n and l− i− j−1 6 n. (3.13)

Then, using (3.13), we get

((x1 . . .xk, i)a (xk+1 . . .xl , j))π

= (x1 . . .xkxk+1 . . .xl , i+ j+1)π = x1β a′ . . .a′ xi+ j+2β `′ . . .`′ xlβ

= (x1β a′ . . .a′ xi+1β `′ . . .`′ xkβ )a′ (xk+1β a′ . . .a′ xk+ j+1β `′ . . .`′ xlβ )

= (x1 . . .xk, i)π a′ (xk+1 . . .xl , j)π.

If i+ j+2 > n or l− i− j−1 > n, then

((x1 . . .xk, i)a (xk+1 . . .xl , j))π = 0π = 0 = x1β a′ . . .a′ xi+ j+2β `′ . . .`′ xlβ

= (x1β a′ . . .a′ xi+1β `′ . . .`′ xkβ )a′ (xk+1β a′ . . .a′ xk+ j+1β `′ . . .`′ xlβ )

= (x1 . . .xk, i)π a′ (xk+1 . . .xl , j)π.

So,
((x1 . . .xk, i)a (xk+1 . . .xl , j))π = (x1 . . .xk, i)π a′ (xk+1 . . .xl , j)π

for all (x1 . . .xk, i),(xk+1 . . .xl , j) ∈ FDSDn(X).

Further assume
i+ j+1 6 n and l− i− j 6 n. (3.14)

Using (3.14), we obtain

((x1 . . .xk, i)` (xk+1 . . .xl , j))π

= (x1 . . .xkxk+1 . . .xl , i+ j)π = x1β a′ . . .a′ xi+ j+1β `′ . . .`′ xlβ

= (x1β a′ . . .a′ xi+1β `′ . . .`′ xkβ )`′ (xk+1β a′ . . .a′ xk+ j+1β `′ . . .`′ xlβ )

= (x1 . . .xk, i)π `′ (xk+1 . . .xl , j)π.
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If i+ j+1 > n or l− i− j > n, then

((x1 . . .xk, i)` (xk+1 . . .xl , j))π = 0π = 0 = x1β a′ . . .a′ xi+ j+1β `′ . . .`′ xlβ

= (x1β a′ . . .a′ xi+1β `′ . . .`′ xkβ )`′ (xk+1β a′ . . .a′ xk+ j+1β `′ . . .`′ xlβ )

= (x1 . . .xk, i)π `′ (xk+1 . . .xl , j)π.

Thus,

((x1 . . .xk, i)` (xk+1 . . .xl , j))π = (x1 . . .xk, i)π `′ (xk+1 . . .xl , j)π

for all (x1 . . .xk, i),(xk+1 . . .xl , j) ∈ FDSDn(X).

The proofs of the remaining cases are obvious. So, π is a homomorphism. Evidently,
(x,0)π = (x,0)β ′ for all (x,0) ∈ X ×{0}. Since X ×{0} generates FDSDn(X), we con-
clude that such homomorphism π is unique. Thus, FDSDn(X) is free in the variety of
n-dinilpotent strong doppelsemigroups.

Further, in this section we construct a strong doppelsemigroup which is isomorphic
to the free n-dinilpotent strong doppelsemigroup of rank 1. This construction is more
elegant as it is obtained only from N0.

Fix n ∈ N and let

ϒn := {(k,m) ∈ N×N0 | k > m, m+1 6 n, k−m 6 n}∪{0}.

Define operations a and ` on ϒn by

(k1,m1)a (k2,m2) :=


(k1 + k2,m1 +m2 +1) if m1 +m2 +2 6 n,

k1 + k2−m1−m2−1 6 n,

0 otherwise,

(k1,m1)` (k2,m2) :=


(k1 + k2,m1 +m2) if m1 +m2 +1 6 n,

k1 + k2−m1−m2 6 n,

0 otherwise

and
(k1,m1)∗0 := 0∗ (k1,m1) := 0∗0 := 0
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for all (k1,m1),(k2,m2) ∈ ϒn \ {0} and ∗ ∈ {a,`}. The algebra obtained in this way is
denoted by ϒn. A direct verification shows that ϒn is a strong doppelsemigroup.

Exercise 3.2.2. Prove that ϒn is a strong doppelsemigroup.

Lemma 3.2.3. If |X |= 1, then ϒn ∼= FDSDn(X).

Proof. Let X = {r}. One can show that a map τ : ϒn→ FDSDn(X), defined by the rule

ωτ :=

(rk,m) if ω = (k,m) ∈ ϒn \{0},

0 if ω = 0,

is an isomorphism.

Exercise 3.2.4. Prove that ϒn and FDSDn(X) are isomorphic if |X |= 1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • •

3.3 Free commutative and free n-nilpotent strong
doppelsemigroups

As we have seen in the previous chapter commutative (n-nilpotent) doppelsemigroups
are defined by the family of identities and so, they form a variety. In this section, for
the indicated variety we deal with a subvariety of commutative (n-nilpotent) strong dop-
pelsemigroups. We consider a free commutative (n-nilpotent) strong doppelsemigroup
of an arbitrary rank and discuss separately free commutative (n-nilpotent) strong dop-
pelsemigroups of rank 1.

Every commutative strong doppelsemigroup is a commutative doppelsemigroup, and
conversely, by Lemma 2.2.4, every commutative doppelsemigroup is strong. So, we ob-
tain the following lemma.

Lemma 3.3.1. The varieties of commutative strong doppelsemigroups and of commuta-

tive doppelsemigroups coincide.

Using the notation of Section 2.2, from the last lemma we obtain

Corollary 3.3.2. (i) FDS∗(X) is the free commutative strong doppelsemigroup.
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(ii) (T ∗,◦a,◦b) is the free commutative strong doppelsemigroup of rank 1.

Now we construct a strong doppelsemigroup which is isomorphic to the free commu-
tative strong doppelsemigroup FDS∗(X).

In the construction of F̃[X ] (see Section 3.1) instead of the free semigroup on X take
the free commutative semigroup F∗[X ] on X . In this case, denote by F̃∗[X ] the algebra
(C,a,`) with operations defined by (3.1), (3.2).

Lemma 3.3.3. FDS∗(X)∼= F̃∗[X ].

Proof. Define the map

δ : FDS∗(X)→ F̃∗[X ] : (w,u) 7→ (w,da(u)),

where da(u) is the number of occurrences of an element a in u. By definition, da(θ) = 0.
For all (w1,u1 ),(w2,u2) ∈ FDS∗(X), we have

((w1u1)≺ (w2,u2))δ = (w1w2,u1au2)δ = (w1w2,da(u1au2))

= (w1w2,da(u1)+1+da(u2)) = (w1,da(u1))a (w2,da(u2))

= (w1,u1)δ a (w2,u2)δ

and

((w1,u1)� (w2,u2))δ = (w1w2,u1bu2)δ = (w1w2,da(u1bu2))

= (w1w2,da(u1)+da(u2)) = (w1,da(u1))` (w2,da(u2))

= (w1,u1)δ ` (w2,u2)δ .

Thus, δ is a homomorphism.
The map δ is a surjection. Indeed, assuming y0 = θ for y ∈ {a,b}, for any element

(w,m) ∈ F̃∗[X ] there exists (w,amblw−m−1) ∈ FDS∗(X) such that

(w,amblw−m−1)δ = (w,da(amblw−m−1)) = (w,m).

Let (w1,u1) 6= (w2,u2). If w1 6= w2, then

(w1,u1)δ = (w1,da(u1)) 6= (w2,da(u2)) = (w2,u2)δ .

Assume u1 6= u2. If lu1 6= lu2 , then it is obvious that w1 6= w2, and from here as
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above (w1,u1)δ 6= (w2,u2)δ . In the case lu1 = lu2 , we have da(u1) 6= da(u2) and so,
(w1,u1)δ 6= (w2,u2)δ again. Thereby, δ is an injection.

Thus, δ is an isomorphism.

Further consider separately one-generated free commutative strong doppelsemigroups.
Using the notation of Section 3.1, from Lemma 3.3.3 we obtain

Corollary 3.3.4. (T ∗,◦a,◦b)∼= R.

Exercise 3.3.5. Prove Corollary 3.3.4.

Let us turn to constructing free n-nilpotent strong doppelsemigroups.

Fix n ∈N and assume Cn := {(w,m) ∈ F̃[X ] | lw 6 n}∪{0}. Define operations a and `
on Cn by

(w1,m1)a (w2,m2) :=

(w1w2,m1 +m2 +1) if lw1w2 6 n,

0 if lw1w2 > n,

(w1,m1)` (w2,m2) :=

(w1w2,m1 +m2) if lw1w2 6 n,

0 if lw1w2 > n

and
(w1,m1)∗0 := 0∗ (w1,m1) := 0∗0 := 0

for all (w1,m1),(w2,m2) ∈Cn \{0} and ∗ ∈ {a,`}. The algebra (Cn,a,`) is denoted by
FNSDn(X).

Theorem 3.3.6. FNSDn(X) is the free n-nilpotent strong doppelsemigroup.

Proof. Similarly to Theorem 1 from [43], the fact that FNSDn(X) is an n-nilpotent strong
doppelsemigroup can be proved.

Let us show that FNSDn(X) is free in the variety of n-nilpotent strong doppelsemi-
groups.

Let (K,a′,`′) be an arbitrary n-nilpotent strong doppelsemigroup and β : X → K an
arbitrary map. Define a map

ϕ : FNSDn(X)→ (K,a′,`′) : ω 7→ ωϕ
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as

ωϕ :=



x1β a′ . . .a′ xi+1β `′ . . .`′ xkβ if ω = (x1 . . .xk, i),

xp ∈ X ,1 6 p 6 k, k > 1,

x1β if ω = (x1,0), x1 ∈ X ,

0 if ω = 0.

According to Lemmas 1.2.7 and 1.2.9 ϕ is well-defined. Using Lemmas 1.2.7 and 1.2.11,
one can prove that ϕ is a homomorphism.

Exercise 3.3.7. Show that FNSDn(X) is an n-nilpotent strong doppelsemigroup.

Exercise 3.3.8. Prove that the map ϕ defined in the proof of Theorem 3.3.6 is a homo-
morphism.

Now we present an alternative construction for the free n-nilpotent strong doppelsemi-
group of rank 1.

Fix n ∈N and let Pn := {(k,m) ∈ R | k 6 n}∪{0} (see Section 3.1). Define operations
a and ` on Pn by

(k1,m1)a (k2,m2) :=

(k1 + k2,m1 +m2 +1) if k1 + k2 6 n,

0 if k1 + k2 > n,

(k1,m1)` (k2,m2) :=

(k1 + k2,m1 +m2) if k1 + k2 6 n,

0 if k1 + k2 > n

and
(k1,m1)∗0 := 0∗ (k1,m1) := 0∗0 := 0

for all (k1,m1),(k2,m2) ∈ Pn \ {0} and ∗ ∈ {a,`}. The algebra (Pn,a,`) is denoted by
Pn. One can check that Pn is a strong doppelsemigroup.

Exercise 3.3.9. Show that Pn is a strong doppelsemigroup.

Lemma 3.3.10. If |X |= 1, then Pn ∼= FNSDn(X).

Proof. Let X = {r}. An easy verification shows that a map ξ : Pn→ FNSDn(X), defined
by

ωξ :=

(rk,m) if ω = (k,m) ∈ Pn \{0},

0 if ω = 0,
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is an isomorphism.

Exercise 3.3.11. Prove that Pn and FNSDn(X) are isomorphic if |X |= 1.

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

3.4 The least congruences on a free strong doppelsemigroup

In the previous chapter we have given the definitions of an n-dinilpotent congruence, of
a commutative congruence and of an n-nilpotent congruence on a doppelsemigroup. The
contents of this section is the description of the least n-dinilpotent congruence, of the least
commutative congruence and of the least n-nilpotent congruence on a free strong dop-
pelsemigroup. We also establish that the automorphism groups of FSD(X), FDSDn(X)

and FNSDn(X) are isomorphic to the symmetric group on X .

Let F̃[X ] be the free strong doppelsemigroup (see Section 3.1). Fix n ∈ N and let

Yn := {(w,m) ∈ F̃[X ] | m+1 > n or lw−m > n}.

Define a relation ε(n) on F̃[X ] by

(w1,m1)ε(n)(w2,m2)

if and only if

(w1,m1) = (w2,m2) or (w1,m1),(w2,m2) ∈ Yn.

By ? denote the operation on F∗[X ]. Take (x1 . . .xk, i),(y1 . . .yh, j) ∈ F̃[X ], where
xp,yq ∈ X for 1 6 p 6 k, 1 6 q 6 h, and define a relation η on F̃[X ] by

(x1 . . .xk, i)η(y1 . . .yh, j)

if and only if

x1 ? . . . ? xk = y1 ? . . . ? yh, i = j.

For every n ∈ N define a relation ℘(n) on F̃[X ] by

(w1,m1)℘(n)(w2,m2)
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if and only if

(w1,m1) = (w2,m2) or lw1 > n, lw2 > n.

Theorem 3.4.1. Let F̃[X ] be the free strong doppelsemigroup. Then

(i) ε(n) is the least n-dinilpotent congruence on F̃[X ];

(ii) η is the least commutative congruence on F̃[X ];

(iii) ℘(n) is the least n-nilpotent congruence on F̃[X ].

Proof. (i) Define a map κn : F̃[X ]→ FDSDn(X) by

(w,m)κn :=

(w,m) if m+1 6 n, lw−m 6 n,

0 if m+1 > n or lw−m > n,

where (w,m) ∈ F̃[X ]. Show that κn is a homomorphism.

Take (w1,m1),(w2,m2) ∈ F̃[X ]. Let (3.10) and (3.5) hold. From (3.10) and (3.5) it
follows

m1 +1 < n, m2 +1 < n, lw1 −m1 6 n and lw2 −m2 6 n. (3.15)

Using (3.10), (3.5) and (3.15), we get

((w1,m1)a (w2,m2))κn = (w1w2,m1 +m2 +1)κn = (w1w2,m1 +m2 +1)

= (w1,m1)a (w2,m2) = (w1,m1)κn a (w2,m2)κn.

If m1 +m2 +2 > n or lw1w2 −m1−m2−1 > n, then

((w1,m1)a (w2,m2))κn = (w1w2,m1 +m2 +1)κn = 0 = (w1,m1)κn a (w2,m2)κn.

Let further (3.7) and (3.12) hold. From (3.7) and (3.12) it follows

m1 +1 6 n, m2 +1 6 n, lw1 −m1 < n and lw2 −m2 < n. (3.16)
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Using (3.7), (3.12) and (3.16), we obtain

((w1,m1)` (w2,m2))κn = (w1w2,m1 +m2)κn = (w1w2,m1 +m2)

= (w1,m1)` (w2,m2) = (w1,m1)κn ` (w2,m2)κn.

If m1 +m2 +1 > n or lw1w2 −m1−m2 > n, then

((w1,m1)` (w2,m2))κn = (w1w2,m1 +m2)κn = 0 = (w1,u1)κn ` (w2,u2)κn.

Thus, κn is a surjective homomorphism. By Theorem 3.2.1, FDSDn(X) is the free
n-dinilpotent strong doppelsemigroup. Then ∆κn is the least n-dinilpotent congruence
on F̃[X ]. From the definition of κn it follows that ∆κn = ε(n).

(ii) Define a map ζ : F̃[X ]→ F̃
∗
[X ] by

ωζ :=

(x1 ? . . . ? xk, i) if ω = (x1 . . .xk, i), k > 1,

(x1,0) if ω = (x1,0).

It is immediate to show that ζ is a surjective homomorphism. By Lemma 3.3.3, F̃
∗
[X ] is

the free commutative strong doppelsemigroup. Then ∆ζ is the least commutative congru-
ence on F̃[X ]. From the definition of ζ it follows that ∆ζ = η .

(iii) Consider a map ρn : F̃[X ]→ FNSDn(X) defined by the rule

(w,m)ρn :=

(w,m) if lw 6 n,

0 if lw > n,

where (w,m) ∈ F̃[X ]. Similarly to the proof of Theorem 4 from [43], the fact that ρn is
a surjective homomorphism can be proved. According to Theorem 3.3.6 FNSDn(X) is
the free n-nilpotent strong doppelsemigroup. It means that ∆ρn is the least n-nilpotent
congruence on F̃[X ]. From the construction of ρn it follows that ∆ρn =℘(n).

Exercise 3.4.2. Show that the maps ζ and ρn defined in the proof of Theorem 3.4.1
are surjective homomorphisms.

Recall that we denote the symmetric group on X by ℑ[X ] and the automorphism group
of a doppelsemigroup D′ by AutD′.
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It is not difficult to see that the free algebras constructed in Sections 3.1, 3.2 and 3.3
are determined uniquely up to isomorphism by cardinality of the set X . Hence, obtain the
following lemma.

Lemma 3.4.3. AutFSD(X)∼= AutFDSDn(X)∼= AutFNSDn(X)∼= ℑ[X ].

Exercise 3.4.4. Prove Lemma 3.4.3.

Note that by Lemma 2.2.17, AutFDS∗(X)∼= ℑ[X ].
Now we formulate one open problem.

Open Problem 3.4.5. Let R be a class of universal algebras. It is well known that the
free product in R always exists if R is a variety of universal algebras. The free product of
arbitrary dimonoids and the free product of arbitrary doppelsemigroups were constructed
in Section 2.1 (see also [47] and [48], respectively). It is natural to raise the following
problem.

Construct a free product of strong doppelsemigroups.

At the end of the chapter we show connections between doppelsemigroups and other
algebraic structures.

One of the important motivations of studying doppelsemigroups comes from their con-
nections to duplexes, restrictive bisemigroups and trioids causing the greatest interest
from the point of view of applications. In [31], the notion of a duplex, that is, a nonempty
set equipped with two binary associative operations, was introduced and the free duplex
was constructed. Duplexes with operations a and ` satisfying the axioms (D1), (D2)
were considered in [31], and in this work the free doppelsemigroup of rank 1 was given.
The operations of one-generated free doppelsemigroups were used in [25]. Duplexes with
two binary idempotent operations a and ` satisfying the axiom (D1) (so-called restrictive
bisemigroups) were studied in the work of Schein [34]. The axiom (D2) also appears in
defining identities of trialgebras and of trioids introduced by Loday and Ronco [26] (see
also [51]) in the context of algebraic topology.
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