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Mathematical models: the source of magnetic �eld, the lump of ore (paramagnetic body) have been created. The

ore dynamics in magnetic �eld is considered taking into account gravity and aerodynamic drag force. The results of

modeling indicate the possibility of magnetic separation of ore in �ight. The parameters for the plant optimization

are determined.

PACS: 45.40.Gj

1. INTRODUCTION

A lot of works has been devoted to the study of mag-
netic separation of minerals based on the di�erence
in their magnetic characteristics. Basic approaches
are quite fully represented in the works of [1, 2].

Our task was as far as feasible to o�er a new origi-
nal method of separation; therefore the work has a re-
search nature, i.e. the task is to substantiate the prin-
ciples, to create and study new mathematical models
that are ideal by necessity.

As it is well known from the classical courses of
macroscopic electrodynamics a rigid body placed in
an inhomogeneous magnetic �eld is under the in�u-
ence of a force that depends on magnetic permeability
of the body and on the degree of a �eld inhomogene-
ity. For paramagnets the volume density of force is
directed towards aside on increase of the �eld induc-
tion, while in diamagnets the volume density of force
is directed toward aside on decrease in the induction
of the �eld.

Thus, the behavior of magnetic and nonmagnetic
bodies in a magnetic �eld is di�erent. In particular,
magnetic and nonmagnetic bodies that start moving
with the same speed from the same �eld region will
get di�erent accelerations and will move along the
di�erent trajectories. This is the idea of our method.

The physical processes occurring in ferromagnetic
materials under the in�uence of a magnetic �eld are
very complex. So, it is both impossible and not fea-
sible to create theoretical models that take into con-
sideration in detail all properties of these substances
and bodies.

Therefore simple idealized models have been pro-
posed to advocate operating capability and to evalu-
ate e�ciency of the method. Nevertheless these mod-
els re�ect essential properties of the behavior of bod-
ies in a magnetic �eld.

The motion equations of a magnetized rigid body
of arbitrary shape in an external magnetic �eld were

obtained in [3] � the orientation of the body is given
by the rotation matrix and in [4] the unit quaternions
were used.

The lump of ore (i.e. rigid body sample) can be of
arbitrary form but for our estimates it will be easier
to consider the symmetric top model.

The motion equations of a magnetized symmet-
rical top in an external magnetic �eld were given in
the papers [5, 6].

2. ONE-DIMENSIONAL MODEL OF

MOTION OF A MAGNET

We consider the one-dimensional motion of a mag-
net from the region where the magnetic �eld has a
maximum to a region with zero magnetic �eld. If
we neglect the kinetic energy of magnet rotation the
balance of kinetic and potential energy has the form

mv20
2

− µ⃗ · B⃗0 =
mv2∞
2

− µ⃗ · B⃗∞ =
mv2∞
2

. (1)

Hence we have

v∞ =

√
v20 −

2µ

m
B0. (2)

Deceleration between the start and end time

△v = v∞ − v0 =

√
v20 −

2µ

m
B0 − v0. (3)

We can also write that

△v = v0

(√
1− 2µ

mv20
B0 − 1

)
≈ −µB0

mv0
. (4)

or
△v
v0

≈ −µB0

mv20
. (5)
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3. MOTION EQUATIONS IN A

MAGNETIC FIELD

If there are no other �elds, the Hamiltonian of two
magnetically interacting tops can be written as the
sum of kinetic and potential energies of magnetic
dipole

T =
p⃗ 2

2m
+
αm⃗2

2
;

U = −µ(ν⃗, B⃗(x⃗));

H =
p⃗ 2

2m
+
αm⃗2

2
− µ(ν⃗, B⃗(x⃗)). (6)

The system of equations under study has the form
˙⃗x = 1

m p⃗;
˙⃗p = µνsBs,r e⃗r;
˙⃗ν = α(m⃗× ν⃗);
˙⃗m = µ(ν⃗ × B⃗).

(7)

Our system of equations must be supplemented
by relations of the form{

ν⃗ 2 = 1;

(ν⃗, m⃗) =M3 = const.
(8)

From essence of the problem the translational ve-
locity of the lump is more suitable than the momen-
tum. Moreover, when using the speed value, it is
possible to exclude the mass as a parameter from
our calculations. Therefore, we make the following
changes of variables in the system of equations (7).

v⃗ =
1

m
p⃗; n⃗ =

1

m
m⃗ (9)

and the corresponding parameter substitutions

ᾱ = mα =
1

I/m
; µ̄ =

µ

m
. (10)

Then equations of a motion take the form
˙⃗x = v⃗;
˙⃗v = µ̄νsBs,r e⃗r − ge⃗3;
˙⃗ν = ᾱ(n⃗× ν⃗);
˙⃗n = µ̄(ν⃗ × B⃗).

(11)

The deceleration (5) between the initial and �nal
moment of time that was previously calculated can
now be written in the form

△v
v0

≈ − µ̄B0

v20
. (12)

4. MAGNETIC FIELD SOURCE

MODEL � BRICK

We need to have a realistic model of a power (elec-
tro)magnet.

It is suggested that acceptable model is a plate
z, magnetized along its axis. The wide side of the
plate is perpendicular to the direction of motion of
the lump, and the narrow side is parallel to the di-
rection of lump motion.

We cannot neglect the in�uence of lower edge be-
cause a height of the plate is essentially large.

Then we can combine two plates to create a quasi-
homogeneous �eld in the region of injection the lump.

The derivation of formulas for such a magnet is a
separate task. The main results of solving this task
are as follows. Let introduce the quantities ψx, ψy, ψz

ψx(x, y, z; a, b, c) = − ln (b− y + [(x− a)2 + (y − b)2 + (z − c)2]
1
2 ); (13)

ψy(x, y, z; a, b, c) = − ln (a− x+ [(x− a)2 + (y − b)2 + (z − c)2]
1
2 ); (14)

ψz(x, y, z; a, b, c) = − arctan
(x− a)(y − b)

(z − c)[(x− a)2 + (y − b)2 + (z − c)2]
1
2

. (15)

The obtained quantities describe the �eld created
by a layer of rectangular shape with sides u and w of
magnetic poles located at an altitude of c.

To describe the �eld of the brick it is necessary
to subtract the �eld of a similar layer located at an
altitude of c− l

βi(x, y, z; z0, u, w, l) = ψi(x, y, z;
u

2
,
w

2
, z0)− ψi(x, y, z;−

u

2
,
w

2
, z0) (16)

−ψi(x, y, z;
u

2
,−w

2
, z0) + ψi(x, y, z;−

u

2
,−w

2
, z0)

−ψi(x, y, z;
u

2
,
w

2
, z0 − l) + ψi(x, y, z;−

u

2
,
w

2
, z0 − l)

+ψi(x, y, z;
u

2
,−w

2
, z0 − l)− ψi(x, y, z;−

u

2
,−w

2
, z0 − l),

where u,w, l are the geometric dimensions of the
parallelepiped, z0 is the coordinate of its upper
bound, and the index i takes the value x, y, z.

Taking into account the relationship between the
magnetic �eld and magnetic poles we can �nally ob-

tain the expression for the magnetic induction created
by our magnet in form of brick

Bi(x, y, z; z0, u, w, l) = −µ0J

4π
βi(Ibid), (17)
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where J [A/m] is the magnetization of the brick ma-
terial.
Sign Minus appears because of B⃗ = −∇ψ, where ψ
is the scalar potential of the magnetic �eld.

To �nd the gradient of magnetic induction, we
proceed similarly.

It makes sense for the compactness of the notation

to introduce vector notation

x⃗ = (x, y, z);

a⃗ = (a, b, c);

|x⃗− a⃗| = [(a− x)2 + (b− y)2 + (z − c)2]1/2. (18)

Then the necessary formulas will have the follow-
ing form

ψxx(x, y, z; a, b, c) = − (x⃗− a⃗)1
|x⃗− a⃗| · (|x⃗− a⃗| − (x⃗− a⃗)2)

; (19)

ψxy(x, y, z; a, b, c) =
1

|x⃗− a⃗|
; (20)

ψxz(x, y, z; a, b, c) = − (x⃗− a⃗)3
|x⃗− a⃗| · (|x⃗− a⃗| − (x⃗− a⃗)2)

; (21)

ψyx(x, y, z; a, b, c) =
1

|x⃗− a⃗|
; (22)

ψyy(x, y, z; a, b, c) = − (x⃗− a⃗)2
|x⃗− a⃗| · (|x⃗− a⃗| − (x⃗− a⃗)1)

; (23)

ψyz(x, y, z; a, b, c) = − (x⃗− a⃗)3
|x⃗− a⃗| · (|x⃗− a⃗| − (x⃗− a⃗)1)

; (24)

ψzx(x, y, z; a, b, c) = − (x⃗− a⃗)2(x⃗− a⃗)3
|x⃗− a⃗| · (|x⃗− a⃗|2 − (x⃗− a⃗)22)

; (25)

ψzy(x, y, z; a, b, c) = − (x⃗− a⃗)1(x⃗− a⃗)3
|x⃗− a⃗| · (|x⃗− a⃗|2 − (x⃗− a⃗)21)

; (26)

ψzz(x, y, z; a, b, c) =
(x⃗− a⃗)1(x⃗− a⃗)2 · (|x⃗− a⃗|2 + (x⃗− a⃗)23)

|x⃗− a⃗| · (|x⃗− a⃗|2(x⃗− a⃗)23 + (x⃗− a⃗)21(x⃗− a⃗)22)
. (27)

To obtain the �nal answer we have to act like in
equation (17).

5. LUMP MODEL

Additional simpli�cations of the lump model are con-
nected with a speci�c choice of body shape. We shall
assume that the body has the shape of a solid sphere
with the moment of inertia Ii of a solid sphere with
mass m and radius R, where I1 = I2 = I3 = 2

5mR
2.

Usually in the courses on electromagnetism, �rst
consider the auxiliary task of a dielectric solid sphere
in a constant electric �eld, and then, by analogy, the
task of a solid sphere from magnetic material in a
constant magnetic �eld.

To compile a mathematical model, we need the
expressions for the scalar potential φe � the electric
dipole ([7, (16.84),p.128]; [8, (26),p.161]), the scalar
potential φ1 inside and φ2 outside the dielectric solid
sphere ([7, p.150-151]; [8, p.187-188]), the energy of
the solid sphere for given external charges ([7, (18.30),
(18.35), p.158-159]; [8, p.188])
φe(r⃗) =

1
4πε

p⃗e·r⃗
r3 ;

φ1(r⃗) = − 3ε2
ε1+2ε2

E0r cos θ = − 3ε2
ε1+2ε2

E0z;

φ2(r⃗) = −E0z +
R3

r3
ε1−ε2
ε1+2ε2

E0z = −E0z +
1

4πε2
P⃗e·r⃗
r3 ;

We = − 1
2

∫
(ε1 − ε2)E⃗1 · E⃗2 = −1

2 (P⃗e · E⃗0),

(28)

where P⃗e = V (ε1 − ε2)
3ε2

ε1+2ε2
E⃗0, V = 4

3πR
3 is the

volume of the solid sphere, θ is the angle between
the vectors E⃗0 and r⃗, E⃗0 is the external electric �eld
strength, E⃗1, E⃗2 is the electric �eld strength inside
and outside the solid sphere, similarly ε1, ε2 � dielec-
tric permeabilities inside and out solid sphere.

Thus, the ball �eld caused by the displacement of
bound charges is a dipole �eld with the dipole mo-
ment P⃗e. Accordingly, we have the scalar potential
φm of the magnetic dipole ([8, (18), p.208]) in the
form

φm(r⃗) =
1

4π

p⃗m · r⃗
r3

. (29)

Note 1. There is no µ0 in (29), since at given cur-
rents the strength of the magnetic �eld does not de-
pend on the magnetic permeability of the homoge-
neous medium (see the note after [7, (38.27), p.271]),
and φm is the potential precisely for the strength of
the magnetic �eld.

Similarly, for a solid sphere of magnetic material
in a magnetic �eld, we get

H1 =
3µ2

µ1 + 2µ2
H0, (30)

where H⃗0 � the strength of the external magnetic
�eld, H⃗1 � the strength of the �eld inside the solid
sphere, similarly to µ1, µ2 � magnetic permeabilities
inside and outside the solid sphere.
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Then, by analogy with electrostatics, outside the
solid sphere the scalar potential of the magnetic �eld
strength will be

φm2(r⃗) = −H0z +
R3

r3
µ1 − µ2

µ1 + 2µ2
H0z (31)

or

φm2(r⃗) = −H0z +
1

4π

P⃗m · r⃗
r3

, (32)

where

P⃗m = V
(µ1 − µ2)

µ2

3µ2

µ1 + 2µ2
H⃗0. (33)

The energy of the solid sphere for given exter-
nal currents is given by the following expression ([7,
(47.42), (47.43), p.329])

Wm =
1

2

∫
(µ1 − µ2)H⃗1 · H⃗2 =

1

2
(P⃗m · B⃗0). (34)

Substituting (33) in (34), we obtain

Wm = 1
2V

(µ1−µ2)
µ2

3µ2

µ1+2µ2
H⃗0 · B⃗0 =

= 1
2V

3
µ1+2µ2

µ1−µ2

µ2
B⃗2

0 . (35)

If µ2 = µ0 and µ1 = µ then

Wm = 1
2V

3
µ+2µ0

µ−µ0

µ0
B⃗2

0 =

= 1
2V

3χ
3+χ

1
µ0
B⃗2

0 . (36)

We �nd the force acting on the solid sphere of mag-
netic [7, (47.53), p.331]

F⃗ = ∇Wm. (37)

We assume that within the limits of the solid
sphere the �eld varies slightly, so that for the mag-
netic moment of the solid sphere and its energy in an
external �eld, one can use the formulas (29)-(37).

6. MOTION OF THE LUMP IN THE

EXTERNAL FIELDS

Since the magnetic moment of the solid sphere is par-
allel to the external �eld (33), the magnetic �eld does
not create a moment of force. The force of gravity
also does not create a moment of force. Then we can
not consider the rotational degrees of freedom.

Thus, the complete system of motion equations
has the form {

˙⃗x = v⃗;
˙⃗v = κBsBs,r e⃗r − ge⃗3,

(38)

where

κ =
3χ

3 + χ

1

ϱµ0
. (39)

For the system (38) we can introduce the energy inte-
gral. We introduce the energies: kinetic T , potential
U and total E

T =
1

2
v2;

U = −1

2
κB2(x⃗) + gz;

E = T + U. (40)

Having neglected for a time the in�uence of the
gravity �eld, we consider a one-dimensional motion
along the x axis. In this case it is su�cient to use the
energy conservation law E = E0 from which

v = v0

[
1 + κ

B2 −B2
0

v20

]1/2
;

v − v0
v0

=

[
1 + κ

B2 −B2
0

v20

]1/2
− 1 (41)

follows.

If the action of the force is relatively small (the
increment of the kinetic energy is much less than the
initial one), then

v − v0
v0

=
1

2
κ
B2 −B2

0

v20
. (42)

Note 2. In [7, p.270] we �nd the following state-
ment "At room temperature, the paramagnetic sus-
ceptibility of substances in the solid state is of the
order of ∼ 10−3, i.e. approximately two orders of
magnitude greater than the diamagnetic susceptibil-
ity".

This means that in the case of weakly ferro-
magnetic materials the paramagnetic susceptibility
is larger than the diamagnetic susceptibility. In ad-
dition, this means that the "demagnetizing" �eld is
very small and can be neglected.

We carry out estimates for our case, i.e. substi-
tute χ = 3.2 · 10−3, ϱ = 4 · 103 kg/m3 in the formula
(39) and then in (42) and have{

κ ≃ 8;
v−v0

v0
≃ −4

B2
0

v2
0
.

(43)

7. THE WHITE-WOODSON

APPROACH TO NONLINEAR

MAGNETISM

As shown in the literature, the forces acting on a
ferromagnet, are among the most poorly developed
questions in macroscopic electrodynamics.

A general phenomenological approach was given
in the D.C.Whit and H.H.Woodson monograph [9].

The authors introduce the concept of force func-
tions. And, in particular, they consider energy and
coenergy.

The stored energy is determined by the expression

W =

∫ Ψ1,...,Ψn

0,...,0

n∑
s=1

i
′

sdΨ
′

s, (44)

and the coenergy by the expression

W
′
=

∫ i1,...,in

0,...,0

n∑
s=1

Ψ
′

sdi
′

s. (45)
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The relationship between energy and coenergy is

W +W
′
=

n∑
s=1

isΨs. (46)

The expression of the mechanical forces acting on
the body through the mentioned force functions is
represented due to the choice of independent vari-
ables.

If the coordinates of the body xr and currents
is are chosen as independent variables, then the me-
chanical force is expressed in terms of magnetic W
energy as follows

fr = −∂W
∂xr

+
n∑

s=1

is
∂Ψs

∂xr
. (47)

And through the energy of W
′

fr =
∂W

′

∂xr
. (48)

If the coordinates of the body xr and the �ux link-
age Ψs are chosen as independent variables, then the
mechanical force is expressed in terms of the magnetic
W energy as follows

fr = −∂W
∂xr

. (49)

And through the energy of W
′

fr =
∂W

′

∂xr
−

n∑
s=1

Ψs
∂is
∂xr

. (50)

8. ACCOUNTING EFFECT OF

SATURATION

In this section, we attempt to take into account the
main e�ect of nonlinearity in the dependence of mag-
netization on the strength of magnetic �eld � this is
so called saturation e�ect.

We shall consider the following dependence of the
coenergy on the �eld strength as the analog of for-
mula (45)

W
′
= µ0

∫ H0

0

P⃗m(H⃗)dH⃗, (51)

where P⃗m(H⃗) is the dependence of the magnetic mo-
ment of the sample on the strength of the external
magnetic �eld.

To take into account saturation, we can propose
a rather crude model with a piecewise continuous de-
pendence of the magnetic moment of the sample on
the strength of the magnetic �eld.

That is, up to some �eld H(S) we will use the
result of the 5th section, namely: calculate the coen-
ergy of the sample as

W
′
= µ0

∫ H0

0

Pm(H)dH =
1

2
µ0Pm(H0)H0 . (52)

For �eld strengths above H(S), we will assume
that the magnetic moment of the sample is no
longer depends on the applied �eld and is equal to
Pm(H(S)).

Thus

W
′
= µ0

∫ H0

0

Pm(H)dH =

=
1

2
µ0Pm(H(S))H(S) + (53)

+µ0Pm(H(S))(H0 −H(S)).

W
′
= µ0Pm(H(S))H0 −

1

2
µ0Pm(H(S))H(S) . (54)

Finally, we can write this way

W
′
(H0) =


1
2µ0Pm(H0)H0, H0 ≤ H(S)

µ0Pm(H(S))H0−
−1

2µ0Pm(H(S))H(S),H0 > H(S) .

(55)

Then the equations of motion can be written us-
ing the potential energy U

U(x) =


− 1

2κB
2(x) + gz, B(x) ≤ B(S)

1
2κ(B

(S))2−
−κB(S)B(x) + gz, B(x) > B(S),

(56)

namely {
˙⃗x = v⃗;
˙⃗v = F⃗ ,

(57)

where F⃗ = −∇U(x),

F⃗ =

{
κBiBi,ke⃗k − ge⃗3, B(x) ≤ B(S)

κB(S)

B BiBi,ke⃗k − ge⃗3, B(x) > B(S) .
(58)

The ratio (42), assuming the �eld to be vanish-
ingly small at a distance from the magnet, now looks
like this

v − v0
v0

=
1

2
κ
B(S)( 12B

(S) −B0)

v20
. (59)

Note 3. The strength of air resistance

F⃗air = −CairϱairSbodyv
2 v⃗

|v⃗|
= (60)

= −CairϱairSbodyvv⃗ .

As is known, for a sphere the volume and area,
respectively, are equal{

Vbody = 4
3πR

3;

Sbody = πR2.
(61)

Then the corresponding acceleration has the form

a⃗air =
F⃗air

mbody
= −3

4
Cair

ϱair
ϱbody

vv⃗

R
. (62)
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9. CONCLUSIONS

Calculations based on the proposed theoretical mod-
els show the validity of "magnetic separation in
�ight". Trajectories of magnetized and nonmagnetic
rigid bodies turn out to be spatially separated. Mag-
nitude of separation on the one hand essentially de-
pends on magnetic properties of the substance, and,
on the other hand, depends on the magnitude of the
�eld in the injection region. The magnitude of the
separation is noticeable even for weakly ferromag-
netic ores (hematites), but the conclusion about the
technological applicability of the method for a partic-
ular production will essentially depend on other (not
physical) factors (for example, economic, etc.). For
strongly ferromagnetic ores, the e�ect is unambigu-
ous � the separation can be very signi�cant. Spatial
separation also depends on other parameters such as
initial velocity, throw angle, geometry of a magnet.
For these parameters optimization is possible.

The used models are idealized and take into ac-
count only the most essential characteristics of inter-
action between magnetized bodies and source �eld.
These models are open for giving weight to other fac-
tors that a�ect the movement of bodies (collision ef-
fects, etc.). Calculation of a trajectory is performed
very fast due to e�cient algorithm. It allows setting
and solving problems of optimization by the param-
eters.

But nevertheless, direct experimental con�rma-
tion of the separation method e�ciency is much more
preferable. Clari�cation of theoretical models cannot
be a �nal purpose by itself, and an experiment alone
can give a practical answer to the question of the ap-
plying method e�ciency to the certain ores.

The proposed theoretical models and calculation
programs enable us to put forward the necessary re-
quirements for separators construction that use the
proposed method. They also provide a basis for op-
timal engineering decisions making.
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ÌÅÒÎÄ ÌÀÃÍÈÒÍÎÃÎ ÐÀÇÄÅËÅÍÈß ÍÀ ËÅÒÓ

Ñ.È. Çóá , Ñ.Ñ. Çóá, Ñ.È.Ëÿøêî

Ñîçäàíû ìàòåìàòè÷åñêèå ìîäåëè: èñòî÷íèêà ìàãíèòíîãî ïîëÿ è øòóôà (ïàðàìàãíèòíîå òåëî). Ðàñ-
ñìîòðåíà äèíàìèêà ðóäû â ìàãíèòíîì ïîëå ñ ó÷åòîì ñèëû òÿæåñòè è ñèëû àýðîäèíàìè÷åñêîãî ñîïðî-
òèâëåíèÿ. Ðåçóëüòàòû ìîäåëèðîâàíèÿ óêàçûâàþò íà âîçìîæíîñòü ìàãíèòíîé ñåïàðàöèè ðóäû â ïîë¼òå.
Îïðåäåëåíû ïàðàìåòðû îïòèìèçàöèè óñòàíîâêè.

ÌÅÒÎÄ ÌÀÃÍIÒÍÎÃÎ ÐÎÇÄIËÅÍÍß ÍÀ ËÜÎÒÓ

Ñ. I. Çóá , Ñ.Ñ. Çóá, Ñ. I.Ëÿøêî

Ñòâîðåíî ìàòåìàòè÷íi ìîäåëi: äæåðåëà ìàãíiòíîãî ïîëÿ òà øòóôà (ïàðàìàãíiòíå òiëî). Ðîçãëÿíóòî
äèíàìiêó ðóäè â ìàãíiòíîìó ïîëi ç óðàõóâàííÿì ñèëè òÿæiííÿ òà ñèëè àåðîäèíàìi÷íîãî îïîðó. Ðåçóëü-
òàòè ìîäåëþâàííÿ âêàçóþòü íà ìîæëèâiñòü ìàãíiòíî¨ ñåïàðàöi¨ ðóäè â ïîëüîòi. Âèçíà÷åíî ïàðàìåòðè
îïòèìiçàöi¨ óñòàíîâêè.
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