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Semilattice decompositions of trioids
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Abstract. We describe all semilattice congruences on an arbitrary trioid and define
the least semilattice congruence on this trioid. We also show that every trioid is a
semilattice of s-simple subtrioids.
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1 Introduction

Trioids were introduced by J.-L. Loday and M. O.Ronco [1] for the study of
ternary planar trees. Trialgebras, which are based on the notion of a trioid, have
been studied in different papers (see, for example, [1–3]). It is well known that
the notion of a trioid generalizes the notion of a dimonoid [4, 5]. Dimonoids play a
prominent role in problems from the theory of Leibniz algebras. Trioids were studied
in some papers of the author (see, for example, [6–8]). Note that if the operations
of a trioid coincide then it becomes a semigroup. So, trioids are a generalization of
semigroups.

In this work we describe semilattice decompositions of trioids. In Section 2
we give necessary definitions, auxiliary results (Proposition 1 and Lemma 1) and
describe some connections between trioids and dimonoids (Lemma 2). Yamada [9]
described all semilattice congruences on an arbitrary semigroup and proved that
every semigroup is a semilattice of s-simple semigroups. These results were genera-
lized to dimonoids in [10]. In Section 3 we extend results from [10] to the case of
trioids (Theorems 1 and 2).

2 Preliminaries

A nonempty set T equipped with three binary associative operations ⊣, ⊢ and
⊥ satisfying the following axioms:

(x ⊣ y) ⊣ z = x ⊣ (y ⊢ z), (T1)

(x ⊢ y) ⊣ z = x ⊢ (y ⊣ z), (T2)

(x ⊣ y) ⊢ z = x ⊢ (y ⊢ z), (T3)

(x ⊣ y) ⊣ z = x ⊣ (y ⊥ z), (T4)
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(x ⊥ y) ⊣ z = x ⊥ (y ⊣ z), (T5)

(x ⊣ y) ⊥ z = x ⊥ (y ⊢ z), (T6)

(x ⊢ y) ⊥ z = x ⊢ (y ⊥ z), (T7)

(x ⊥ y) ⊢ z = x ⊢ (y ⊢ z) (T8)

for all x, y, z ∈ T , is called a trioid. If the operations of a trioid coincide, then the
trioid becomes a semigroup.

Recall that a nonempty set T equipped with two binary associative operations
⊣ and ⊢ satisfying the axioms (T1) − (T3) is called a dimonoid (see, for example,
[4, 5]).

Let (T,⊥) be an arbitrary semigroup. Define operations ⊣ and ⊢ on T by

x ⊣ y = x, x ⊢ y = y

for all x, y ∈ T .

Proposition 1. ([8], Proposition 10). (T,⊣,⊢,⊥) is a trioid.

The trioid (T,⊣,⊢,⊥) will be denoted by T⊥

lr .

Other examples of trioids can be found in [1, 6–8].
A commutative idempotent semigroup is called a semilattice.

Lemma 1. ([7], Lemma 1). The operations of a trioid (T,⊣,⊢,⊥) coincide if (T,⊣)
is a semilattice.

Let X = {1, 2, 3}. For every pair (x, y) ∈ X × X let T (x,y) = (T, ∗x, ∗y) be an
ordered triple, where T is a nonempty set and ∗x, ∗y are binary operations on T .
Let

B = {(1, 1), (2, 2), (3, 3), (1, 2)} ⊂ X × X.

The following lemma describes connections between trioids and dimonoids.

Lemma 2. For any trioid (T, ∗1, ∗2, ∗3) the algebra T (x,y), (x, y) ∈ X × X, is a
dimonoid if (x, y) ∈ B. There exists some trioid (T, ∗1, ∗2, ∗3) for which the algebra
T (x,y), (x, y) ∈ X2\B, is not a dimonoid.

Proof. Let (T, ∗1, ∗2, ∗3) be a trioid. It is easy to see that the algebras T (1,1), T (2,2),
T (3,3) and T (1,2) are dimonoids.

Now we shall prove the second part of the lemma.

Let F [A] be the free semigroup on a set A and F [A]⊥lr be a triod (see Proposi-

tion 1) such that ⊥ is the concatenation on F [A]. Assume (T, ∗1, ∗2, ∗3) = F [A]⊥lr
and show that for any (x, y) ∈ X2\B the algebra T (x,y) is not a dimonoid.

Let w, u, ω ∈ T (x,y).

For T (1,3) check the axiom (T3):

(w ∗1 u) ∗3 ω = w ∗3 ω = wω 6= wuω = w ∗3 (u ∗3 ω).
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As the axiom (T3) does not hold, then T (1,3) is not a dimonoid.

For T (2,1), T (2,3), T (3,1) and T (3,2) check the axiom (T1).

For T (2,1) we have

(w ∗2 u) ∗2 ω = ω 6= u = w ∗2 u = w ∗2 (u ∗1 ω ).

For T (2,3):

(w ∗2 u) ∗2 ω = ω 6= uω = w ∗2 (u ∗3 ω).

For T (3,1):

(w ∗3 u) ∗3 ω = wuω 6= wu = w ∗3 (u ∗1 ω).

For T (3,2):

(w ∗3 u) ∗3 ω = wuω 6= wω = w ∗3 (u ∗2 ω).

The axiom (T1) does not hold for all fourth cases, so T (2,1), T (2,3), T (3,1) and T (3,2)

are not dimonoids.

The notion of a triband of subtrioids was introduced and investigated in [7].
Recall this definition.

A trioid (T,⊣,⊢,⊥) is called an idempotent trioid or a triband if x ⊣ x =
x ⊢ x = x ⊥ x = x for all x ∈ T . If ϕ : S → M is a homomorphism of trioids, then
the corresponding congruence on S will be denoted by ∆ϕ.

Let S be an arbitrary trioid, J be some idempotent trioid and

α : S → J : x 7→ xα

be a homomorphism. Then every class of the congruence ∆α is a subtrioid of the
trioid S, and the trioid S itself is a union of such trioids Sξ, ξ ∈ J that

xα = ξ ⇔ x ∈ Sξ = ∆x
α = {t ∈ S |(x, t) ∈ ∆α},

Sξ ⊣ Sε ⊆ Sξ⊣ ε, Sξ ⊢ Sε ⊆ Sξ ⊢ε, Sξ ⊥ Sε ⊆ Sξ ⊥ε,

ξ 6= ε ⇒ Sξ

⋂
Sε = ∅.

In this case we say that S is decomposable into a triband of subtrioids (or S is a
triband J of subtrioids Sξ, ξ ∈ J). If J is a band (=idempotent semigroup), then
we say that S is a band J of subtrioids Sξ, ξ ∈ J . If J is a commutative band, then
we say that S is a semilattice J of subtrioids Sξ, ξ ∈ J .

Observe that the notion of a triband of subtrioids generalizes the notion of a
diband of subdimonoids [5] and the notion of a band of semigroups [11].

Examples of trioids which are decomposed into a triband of subtrioids can be
found in [7].
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3 Main results

In this section we describe all semilattice congruences on an arbitrary trioid and
define the least semilattice congruence on this trioid. We also show that every trioid
is a semilattice of s-simple subtrioids.

Let (T,⊣,⊢,⊥) be an arbitrary dimonoid. Yamada introduced the notion of a
P -subsemigroup of an arbitrary semigroup (see [9]). We denote by Ω the collection
of all P -subsemigroups of (T,⊣) and by Tα, Tβ, ... the elements of Ω.

If ρ is a congruence on a trioid (T,⊣,⊢,⊥) such that the operations of
(T,⊣,⊢,⊥)/ρ coincide and it is a semilattice, then we say that ρ is a semilattice
congruence.

For every subset Γ of Ω define a relation Γ⊣ on (T,⊣,⊢,⊥) by

aΓ⊣b if and only if
{(x, y)|x ⊣ a ⊣ y ∈ Tα} = {(x, y)|x ⊣ b ⊣ y ∈ Tα}

for every Tα ∈ Γ.

Theorem 1. The relation Γ⊣ on any trioid (T,⊣,⊢,⊥) is a semilattice congruence.
Conversely, any semilattice congruence on (T,⊣,⊢,⊥) can be obtained by this way.

Proof. The fact that the relation Γ⊣ is a semilattice congruence on a dimonoid
(T,⊣,⊢) has been proved in [10]. Show that Γ⊣ is compatible concerning the opera-
tion ⊥.

Let aΓ⊣b, a, b, c ∈ T . As a ⊣ cΓ⊣b ⊣ c, then

{(x, y)|x ⊣ (a ⊣ c) ⊣ y ∈ Tα} = {(x, y)|x ⊣ (b ⊣ c) ⊣ y ∈ Tα}

for every Tα ∈ Γ. By the associativity of the operation ⊣ and the axiom (T4) of a
trioid we obtain

x ⊣ (a ⊣ c) ⊣ y = ((x ⊣ a) ⊣ c) ⊣ y =

= (x ⊣ (a⊥c)) ⊣ y = x ⊣ (a⊥c) ⊣ y,

x ⊣ (b ⊣ c) ⊣ y = ((x ⊣ b) ⊣ c) ⊣ y =

= (x ⊣ (b⊥c)) ⊣ y = x ⊣ (b⊥c) ⊣ y.

So, a⊥cΓ⊣b⊥c. Analogously, we can prove that c⊥aΓ⊣c⊥b. Thus, Γ⊣ is a con-
gruence on (T, ⊣, ⊢, ⊥).

As (T,⊣)/Γ⊣
is a semilattice, then by Lemma 1 the operations of (T,⊣,⊢,⊥)/Γ⊣

coincide and so, it is a semilattice.
The converse statement follows from [9] (see also [10]).

Theorem 1 generalizes Yamada’s theorem [9] about the structure of all semilattice
congruences on an arbitrary semigroup and the description [10] of all semilattice
congruences on an arbitrary dimonoid.

A trioid (T,⊣,⊢,⊥) will be called s-simple if its least semilattice congruence
coincides with the universal relation on T .
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Theorem 2. The relation Ω⊣ on any trioid (T,⊣,⊢,⊥) is the least semilattice con-
gruence. Every trioid (T,⊣,⊢,⊥) is a semilattice of s-simple subtrioids.

Proof. By Theorem 1 Ω⊣ is a semilattice congruence. If aΩ⊣b, a, b ∈ T , then it is
easy to see that aΓ⊣b for any Γ ⊆ Ω. So, Ω⊣ ⊆ Γ⊣.

Now we shall prove the second statement of the theorem.

Since Ω⊣ is a congruence on (T,⊣,⊢,⊥) and (T,⊣,⊢,⊥)/Ω⊣
is a semilattice, then

(T,⊣,⊢,⊥) → (T,⊣,⊢,⊥)/Ω⊣
: x 7→ [x]

is a homomorphism ([x] is a class of the congruence Ω⊣ which contains x). From
[10] it follows that every class A of the congruence Ω⊣ is an s-simple dimonoid
concerning operations ⊣ and ⊢. Hence we obtain s-simplicity of the subtrioid A of
a trioid (T,⊣,⊢,⊥).

Theorem 2 generalizes Yamada’s theorem [9] about the structure of the least
semilattice congruence on an arbitrary semigroup and the description [10] of the
least semilattice congruence on an arbitrary dimonoid.
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