Semilattice decompositions of trioids

Anatolii V. Zhuchok

Abstract

We describe all semilattice congruences on an arbitrary trioid and define the least semilattice congruence on this trioid. We also show that every trioid is a semilattice of s-simple subtrioids.

Mathematics subject classification: 17A30, 20M10.
Keywords and phrases: Trioid, semilattice congruence, semilattice of subtrioids, dimonoid, semigroup.

1 Introduction

Trioids were introduced by J.-L. Loday and M. O. Ronco [1] for the study of ternary planar trees. Trialgebras, which are based on the notion of a trioid, have been studied in different papers (see, for example, [1-3]). It is well known that the notion of a trioid generalizes the notion of a dimonoid [4,5]. Dimonoids play a prominent role in problems from the theory of Leibniz algebras. Trioids were studied in some papers of the author (see, for example, [6-8]). Note that if the operations of a trioid coincide then it becomes a semigroup. So, trioids are a generalization of semigroups.

In this work we describe semilattice decompositions of trioids. In Section 2 we give necessary definitions, auxiliary results (Proposition 1 and Lemma 1) and describe some connections between trioids and dimonoids (Lemma 2). Yamada [9] described all semilattice congruences on an arbitrary semigroup and proved that every semigroup is a semilattice of s-simple semigroups. These results were generalized to dimonoids in [10]. In Section 3 we extend results from [10] to the case of trioids (Theorems 1 and 2).

2 Preliminaries

A nonempty set T equipped with three binary associative operations \dashv, \vdash and \perp satisfying the following axioms:

$$
\begin{align*}
& (x \dashv y) \dashv z=x \dashv(y \vdash z), \tag{T1}\\
& (x \vdash y) \dashv z=x \vdash(y \dashv z), \tag{T2}\\
& (x \dashv y) \vdash z=x \vdash(y \vdash z), \tag{T3}\\
& (x \dashv y) \dashv z=x \dashv(y \perp z), \tag{T4}
\end{align*}
$$

© Anatolii V. Zhuchok, 2013

$$
\begin{gather*}
(x \perp y) \dashv z=x \perp(y \dashv z), \tag{T5}\\
(x \dashv y) \perp z=x \perp(y \vdash z), \tag{T6}\\
(x \vdash y) \perp z=x \vdash(y \perp z), \tag{T7}\\
(x \perp y) \vdash z=x \vdash(y \vdash z) \tag{T8}
\end{gather*}
$$

for all $x, y, z \in T$, is called a trioid. If the operations of a trioid coincide, then the trioid becomes a semigroup.

Recall that a nonempty set T equipped with two binary associative operations \dashv and \vdash satisfying the axioms $(T 1)-(T 3)$ is called a dimonoid (see, for example, $[4,5])$.

Let (T, \perp) be an arbitrary semigroup. Define operations \dashv and \vdash on T by

$$
x \dashv y=x, \quad x \vdash y=y
$$

for all $x, y \in T$.
Proposition 1. ([8], Proposition 10). $(T, \dashv \vdash, \vdash, \perp)$ is a trioid.
The trioid $(T, \dashv, \vdash, \perp)$ will be denoted by $T_{l r}^{\perp}$.
Other examples of trioids can be found in [1, 6-8].
A commutative idempotent semigroup is called a semilattice.
Lemma 1. ([7], Lemma 1). The operations of a trioid $(T, \dashv, \vdash, \perp)$ coincide if (T, \dashv) is a semilattice.

Let $X=\{1,2,3\}$. For every pair $(x, y) \in X \times X$ let $T^{(x, y)}=\left(T, *_{x}, *_{y}\right)$ be an ordered triple, where T is a nonempty set and $*_{x}, *_{y}$ are binary operations on T. Let

$$
B=\{(1,1),(2,2),(3,3),(1,2)\} \subset X \times X
$$

The following lemma describes connections between trioids and dimonoids.
Lemma 2. For any trioid $\left(T, *_{1}, *_{2}, *_{3}\right)$ the algebra $T^{(x, y)},(x, y) \in X \times X$, is a dimonoid if $(x, y) \in B$. There exists some trioid $\left(T, *_{1}, *_{2}, *_{3}\right)$ for which the algebra $T^{(x, y)},(x, y) \in X^{2} \backslash B$, is not a dimonoid.

Proof. Let $\left(T, *_{1}, *_{2}, *_{3}\right)$ be a trioid. It is easy to see that the algebras $T^{(1,1)}, T^{(2,2)}$, $T^{(3,3)}$ and $T^{(1,2)}$ are dimonoids.

Now we shall prove the second part of the lemma.
Let $F[A]$ be the free semigroup on a set A and $F[A]_{l r}^{\perp}$ be a triod (see Proposition 1) such that \perp is the concatenation on $F[A]$. Assume $\left(T, *_{1}, *_{2}, *_{3}\right)=F[A]_{l r}^{\perp}$ and show that for any $(x, y) \in X^{2} \backslash B$ the algebra $T^{(x, y)}$ is not a dimonoid.

Let $w, u, \omega \in T^{(x, y)}$.
For $T^{(1,3)}$ check the axiom ($T 3$):

$$
\left(w *_{1} u\right) *_{3} \omega=w *_{3} \omega=w \omega \neq w u \omega=w *_{3}\left(u *_{3} \omega\right) .
$$

As the axiom ($T 3$) does not hold, then $T^{(1,3)}$ is not a dimonoid.
For $T^{(2,1)}, T^{(2,3)}, T^{(3,1)}$ and $T^{(3,2)}$ check the axiom ($T 1$).
For $T^{(2,1)}$ we have

$$
\left(w *_{2} u\right) *_{2} \omega=\omega \neq u=w *_{2} u=w *_{2}\left(u *_{1} \omega\right) .
$$

For $T^{(2,3)}$:

$$
\left(w *_{2} u\right) *_{2} \omega=\omega \neq u \omega=w *_{2}\left(u *_{3} \omega\right) .
$$

For $T^{(3,1)}$:

$$
\left(w *_{3} u\right) *_{3} \omega=w u \omega \neq w u=w *_{3}\left(u *_{1} \omega\right) .
$$

For $T^{(3,2)}$:

$$
\left(w *_{3} u\right) *_{3} \omega=w u \omega \neq w \omega=w *_{3}\left(u *_{2} \omega\right) .
$$

The axiom ($T 1$) does not hold for all fourth cases, so $T^{(2,1)}, T^{(2,3)}, T^{(3,1)}$ and $T^{(3,2)}$ are not dimonoids.

The notion of a triband of subtrioids was introduced and investigated in [7]. Recall this definition.

A trioid $(T, \dashv, \vdash, \perp)$ is called an idempotent trioid or a triband if $x \dashv x=$ $x \vdash x=x \perp x=x$ for all $x \in T$. If $\varphi: S \rightarrow M$ is a homomorphism of trioids, then the corresponding congruence on S will be denoted by Δ_{φ}.

Let S be an arbitrary trioid, J be some idempotent trioid and

$$
\alpha: S \rightarrow J: x \mapsto x \alpha
$$

be a homomorphism. Then every class of the congruence Δ_{α} is a subtrioid of the trioid S, and the trioid S itself is a union of such trioids $S_{\xi}, \xi \in J$ that

$$
\begin{gathered}
x \alpha=\xi \Leftrightarrow x \in S_{\xi}=\Delta_{\alpha}^{x}=\left\{t \in S \mid(x, t) \in \Delta_{\alpha}\right\}, \\
S_{\xi} \dashv S_{\varepsilon} \subseteq S_{\xi \dashv \varepsilon}, \quad S_{\xi} \vdash S_{\varepsilon} \subseteq S_{\xi \vdash \varepsilon}, \quad S_{\xi} \perp S_{\varepsilon} \subseteq S_{\xi \perp \varepsilon}, \\
\xi \neq \varepsilon \Rightarrow S_{\xi} \bigcap S_{\varepsilon}=\varnothing .
\end{gathered}
$$

In this case we say that S is decomposable into a triband of subtrioids (or S is a triband J of subtrioids $S_{\xi}, \xi \in J$). If J is a band (=idempotent semigroup), then we say that S is a band J of subtrioids $S_{\xi}, \xi \in J$. If J is a commutative band, then we say that S is a semilattice J of subtrioids $S_{\xi}, \xi \in J$.

Observe that the notion of a triband of subtrioids generalizes the notion of a diband of subdimonoids [5] and the notion of a band of semigroups [11].

Examples of trioids which are decomposed into a triband of subtrioids can be found in [7].

3 Main results

In this section we describe all semilattice congruences on an arbitrary trioid and define the least semilattice congruence on this trioid. We also show that every trioid is a semilattice of s-simple subtrioids.

Let $(T, \dashv, \vdash, \perp)$ be an arbitrary dimonoid. Yamada introduced the notion of a P-subsemigroup of an arbitrary semigroup (see [9]). We denote by Ω the collection of all P-subsemigroups of (T, \dashv) and by $T_{\alpha}, T_{\beta}, \ldots$ the elements of Ω.

If ρ is a congruence on a trioid $(T, \dashv, \vdash, \perp)$ such that the operations of $(T, \dashv, \vdash, \perp) / \rho$ coincide and it is a semilattice, then we say that ρ is a semilattice congruence.

For every subset Γ of Ω define a relation Γ_{\dashv} on $(T, \dashv, \vdash, \perp)$ by

$$
\begin{gathered}
a \Gamma_{\dashv} b \text { if and only if } \\
\left\{(x, y) \mid x \dashv a \dashv y \in T_{\alpha}\right\}=\left\{(x, y) \mid x \dashv b \dashv y \in T_{\alpha}\right\}
\end{gathered}
$$

for every $T_{\alpha} \in \Gamma$.
Theorem 1. The relation Γ_{\dashv} on any trioid $(T, \dashv, \vdash, \perp)$ is a semilattice congruence. Conversely, any semilattice congruence on $(T, \dashv, \vdash, \perp)$ can be obtained by this way.

Proof. The fact that the relation Γ_{\dashv} is a semilattice congruence on a dimonoid (T, \dashv, \vdash) has been proved in [10]. Show that Γ_{\dashv} is compatible concerning the operation \perp.

Let $a \Gamma_{\dashv} b, a, b, c \in T$. As $a \dashv c \Gamma \dashv b \dashv c$, then

$$
\left\{(x, y) \mid x \dashv(a \dashv c) \dashv y \in T_{\alpha}\right\}=\left\{(x, y) \mid x \dashv(b \dashv c) \dashv y \in T_{\alpha}\right\}
$$

for every $T_{\alpha} \in \Gamma$. By the associativity of the operation \dashv and the axiom (T4) of a trioid we obtain

$$
\begin{aligned}
& x \dashv(a \dashv c) \dashv y=((x \dashv a) \dashv c) \dashv y= \\
& =(x \dashv(a \perp c)) \dashv y=x \dashv(a \perp c) \dashv y, \\
& x \dashv(b \dashv c) \dashv y=((x \dashv b) \dashv c) \dashv y= \\
& =(x \dashv(b \perp c)) \dashv y=x \dashv(b \perp c) \dashv y .
\end{aligned}
$$

So, $a \perp c \Gamma_{\dashv} b \perp c$. Analogously, we can prove that $c \perp a \Gamma_{\dashv} c \perp b$. Thus, Γ_{\dashv} is a congruence on $(T, \dashv, \vdash, \perp)$.

As $(T, \dashv) / \Gamma_{\dashv}$ is a semilattice, then by Lemma 1 the operations of $(T, \dashv, \vdash, \perp) / \Gamma_{\dashv}$ coincide and so, it is a semilattice.

The converse statement follows from [9] (see also [10]).
Theorem 1 generalizes Yamada's theorem [9] about the structure of all semilattice congruences on an arbitrary semigroup and the description [10] of all semilattice congruences on an arbitrary dimonoid.

A trioid $(T, \dashv, \vdash, \perp)$ will be called s-simple if its least semilattice congruence coincides with the universal relation on T.

Theorem 2. The relation Ω_{\dashv} on any trioid $(T, \dashv, \vdash, \perp)$ is the least semilattice congruence. Every trioid $(T, \dashv, \vdash, \perp)$ is a semilattice of s-simple subtrioids.

Proof. By Theorem $1 \Omega_{\dashv}$ is a semilattice congruence. If $a \Omega_{\dashv} b, a, b \in T$, then it is easy to see that $a \Gamma_{\dashv} b$ for any $\Gamma \subseteq \Omega$. So, $\Omega_{\dashv} \subseteq \Gamma_{\dashv}$.

Now we shall prove the second statement of the theorem.
Since Ω_{\dashv} is a congruence on $(T, \dashv, \vdash, \perp)$ and $(T, \dashv, \vdash, \perp) / \Omega_{\dashv}$ is a semilattice, then

$$
(T, \dashv, \vdash, \perp) \rightarrow(T, \dashv, \vdash, \perp) / \Omega_{\dashv}: x \mapsto[x]
$$

is a homomorphism ($[x]$ is a class of the congruence Ω_{\dashv} which contains x). From [10] it follows that every class A of the congruence Ω_{\dashv} is an s-simple dimonoid concerning operations \dashv and \vdash. Hence we obtain s-simplicity of the subtrioid A of a trioid $(T, \dashv, \vdash, \perp)$.

Theorem 2 generalizes Yamada's theorem [9] about the structure of the least semilattice congruence on an arbitrary semigroup and the description [10] of the least semilattice congruence on an arbitrary dimonoid.

References

[1] Loday J.-L., Ronco M. O. Trialgebras and families of polytopes, Contemp. Math., 2004, 346, 369-398.
[2] Novelli J.-C., Thibon J. Y. Construction of dendriform trialgebras, C. R., Math., Acad. Sci. Paris 342, 2006, 6, 365-369.
[3] Casas J. M. Trialgebras and Leibniz 3-algebras, Boleten dela Sociedad Matematica Mexicana, 2006, 12, No. 2, 165-178.
[4] Loday J.-L. Dialgebras. Dialgebras and related operads, Lect. Notes Math., Springer-Verlag, Berlin 1763, 2001, 7-66.
[5] Zhuснок A. V. Dimonoids, Algebra and Logic, 2011, 50, No. 4, 323-340.
[6] Zhuchoк A. V. Free trioids, Bulletin of University of Kyiv, Ser. Physics and Mathematics, 2010, 4, 23-26 (In Ukrainian).
[7] Zhuchoк A. V. Tribands of subtrioids, Proc. Inst. Applied Math. and Mech., 2010, 21, 98-106.
[8] Zhuchoк A. V. Some congruences on trioids, Journal of Mathematical Sciences, 2012, 187, No. 2, 138-145.
[9] Yamada M. On the greatest semilattice decomposition of a semigroup, Kodai Math. Sem. Rep., 1955, 7, 59-62.
[10] Zhuchoк A. V. The least semilattice congruence on a dimonoid, Bulletin of University of Kyiv, Ser. Physics and Mathematics, 2009, 3, 22-24 (In Ukrainian).
[11] Clifford A. H. Bands of semigroups, Proc. Amer. Math. Soc., 1954, 5, 499-504.

E-mail: zhuchok_a@mail.ru

